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ABSTRACT

Finite Element Methods for Second Order

Forms of the Transport Equation. (December 1999)

Christopher John Gesh, B.S., Oregon State University;

M.S.E., University of Michigan

Chair of Advisory Committee: Dr. Marvin Adams

We analyze the behavior of second order forms of the transport equation discretized

with finite element methods for problems that contain thick diffusive regions. Our results

are quite general in that we make no assumptions regarding the spatial mesh or the specific

weight and basis functions.

We find that finite element discretizations of second order forms of the transport equa-

tion satisfy the same finite element discretization of the diffusion equation in the thick

diffusion limit, albeit with potentially inaccurate boundary conditions. We show that we

can construct very accurate scalar flux distributions by averaging the even- and odd-parity

solutions to these problems, and discuss the relationship between the parity equations and

the self-adjoint angular flux equations.

For multidimensional problems on certain meshes, we find that the most straightfor-

ward discretizations of the odd-parity and self-adjoint angular flux equations result in a

violation of the discreteinf-supcondition. To rectify this problem, we propose to apply

certain mixed finite element discretizations, and analyze their behavior for thick diffusive

problems.

We then derive and analyze consistent diffusion synthetic acceleration schemes for the

discretizations we have considered. We find that it is straightforward to implement these

schemes in multidimensional geometry, in contrast to past experience in applying diffusion
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synthetic acceleration to discretizations of the first order transport equation. Finally, we

provide numerical results that support our predictions and demonstrate that our analysis

methods are good predictors of observed performance.
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CHAPTER I

INTRODUCTION

A linear transport process is characterized by the motion and interaction of particles with

an underlying medium and is mathematically described by the linear Boltzmann transport

equation. As such, a wide variety of physical problems depend on accurate and efficient

solutions of this transport equation. These problems include radiative transfer in stellar

atmospheres, radiation imaging and oncology, and neutron diffusion in a fission reactor.

Unfortunately, analytic solutions of the transport equation exist for only the most idealized

problems. Therefore, numerical methods are required for nearly all practical applications.

The transport equation itself is an integro-differential equation that in general must be

solved iteratively. Furthermore, solutions of the transport equation can satisfy parabolic,

elliptic or hyperbolic equations in certain physical limits, and are functions of up to seven

independent variables. There is clearly no single spatial discretization scheme that is ap-

propriate for every transport problem.

Many practical transport problems contain regions that are optically thick and diffu-

sive. Due to practical computational limitations, the spatial grids for such problems contain

cells that are many mean free paths thick. Additionally, since the dominant physical process

underlying diffusive problems is scattering (or absorption and re-emission), conventional

within-group iterative methods are inefficient. Therefore, it is desirable to identify transport

discretizations that are both accurate for thick diffusive problems and amenable to iterative

acceleration techniques.

Recent work [1, 2, 3, 4] on finite element method (FEM) discretizations of certain sec-

ond order forms of the transport equation suggests that they may possess both of the above

The journal model isIEEE Transactions on Nuclear Science.
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properties. While much of the deterministic numerical transport research has concentrated

on the first order form transport equation, it is well known that second order forms of the

equation can offer certain advantages. The most obvious is that second order forms of the

transport equation are self-adjoint, and often result in symmetric positive definite (SPD)

matrices when spatially discretized. Very efficient and robust methods exist to solve such

systems. Additionally, there may be advantages in the form of lower unknown counts,

applicability to unstructured grids and ease of parallel implementation.

Our work will focus on: (1) finite element discretizations of second order forms of

the transport equation for thick diffusive problems in Cartesian geometry and, (2) iterative

acceleration of the resulting linear systems. We will also consider an interesting varia-

tion closely related to second order transport formulations. We note that it is physically

appealing to locate vector current unknowns on cell surfaces and scalar flux unknowns in

cell centers. While the fundamental unknown in the transport equations is, of course, a

scalar, we can reformulate traditional second order transport equations as coupled first or-

der equations with scalar and vector unknowns. This reformulation will allow us to apply

powerful mixed finite element methods (MFEM) [5] to transport problems and represents

a significant departure from conventional FEM transport discretizations.

A. Background

Second order forms of the transport equation were first studied in the early 1960s by re-

searchers in the nuclear engineering and astrophysics communities. It was recognized that

self-adjoint forms of the transport equation could be effectively solved by variational meth-

ods [6, 7, 8, 9, 10]. Pomraning [7], Vladimirov [6] and Feautrier [11] first identified the

even- and odd-parity equations, where the fundamental unknowns are the even and odd

components of the angular flux, respectively. The even-parity equation, in particular, be-
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came the starting point for a variety of finite element [12, 13, 14, 15, 16], finite differ-

ence [11, 17, 18, 19] and variational nodal methods [20, 21]. Finite element [12] or spher-

ical harmonic [22] treatments of the angle variable were often used in conjunction with

spatial finite elements for the even-parity equation in an effort to mitigate ray effects as-

sociated with discrete ordinates methods. Numerical methods based on the even-parity

equation have proved effective for both reactor physics and radiative transfer applications,

though sometimes at the expense of greater CPU requirements to achieve accuracy compa-

rable to the best first order methods [23].

Miller [3] analyzed finite difference discretizations of the discrete ordinates even-

parity equations in slab geometry with isotropic scattering. He found that is was possi-

ble to construct differencing schemes that were strictly positive and second order accurate.

Furthermore, he showed that these methods also satisfied diffusion equations in the diffu-

sion limit and could be effectively accelerated with diffusion synthetic acceleration (DSA).

Miller [24] also noted that the direct application of linear continuous finite elements to the

even-parity equation could admit negative solutions. However, if mass matrix lumping is

incorporated, positivity can be guaranteed at the expense of a slight decrease in accuracy

(though the spatial truncation error remains second order).

Adams [1] performed a diffusion limit analysis [25, 26, 27, 28, 29, 30] of the continu-

ous finite element method (CFEM) applied to the even-parity equation in three dimensions

on an unstructured grid. He found that, to leading order, the even-parity solution satis-

fied the corresponding continuous finite element approximation of the diffusion equation.

However, he also noted that the associated Marshak boundary condition could be very in-

accurate for certain problems. A similar result, though with a different boundary condition,

was discovered for the slab geometry odd-parity equation [2]. Ackroyd [31] had earlier

recognized that for certain reactor physics problems a weighted average of the even- and

odd-parity solutions was far more accurate than either the even- or odd-parity solutions
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alone. Adams’s analysis revealed a similar property for thick diffusive problems. Specif-

ically, while the individual even- and odd-parity diffusion limit boundary conditions can

be inaccurate for non-isotropic incident fluxes, their average is an excellent approxima-

tion to the exact boundary condition. Additionally, Adams proposed diffusion synthetic

acceleration schemes [32, 33, 34, 35, 36] based on the discretized even- and odd-parity

diffusion limit equations. Adams confirmed the predicted diffusion limit behavior and the

effectiveness of his DSA schemes with discrete ordinates calculations, though only in slab

geometry.

Morel and McGhee [23] developed a stable DSA scheme for the discrete ordinates

even-parity equation in three dimensions. The performance of their even-parity DSA

scheme was comparable to DSA applied to discretizations of the first order form of the

transport equation, though they noted a slight degradation when reflective boundary con-

ditions were present. Additionally, Morel and McGhee [37] proposed an effective fission

source acceleration scheme for the time dependent even-parity transport equation.

The self adjoint angular flux (SAAF) equation, first identified by Pomraning and

Clark [7] in an effort to improve upon standardP1 theory, has recently been proposed

as a basis for numerical methods [4]. Unlike the even- and odd-parity equations, its fun-

damental unknown is the full range angular flux. Ackroyd [38] has also derived the SAAF

through a generalized least squares solution to the first order transport equation. Morel and

McGhee [4] have presented a simpler derivation and generated slab geometry numerical

results using linear continuous finite elements in space and discrete ordinates in angle.

Of course, there are certain disadvantages common to nearly all second order formu-

lations. The treatment of voids [39, 4] is difficult because of the presence of the total cross

section in the denominator of the streaming term. Additionally, the implementation of re-

flective boundary conditions couples multiple directions in the even- and odd-parity equa-

tions, though not in the SAAF [4]. Methods based on second order forms of the transport
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equation require the inversion of a symmetric positive definite matrix for each direction,

rather than simply sweeping as in first order methods. On the other hand, for unstructured

three dimensional grids, this may be an advantage since sweeping can become difficult un-

der those circumstances. Despite these problems, the potential advantages of second order

transport formulations, particularly for thick diffusive problems, encourage further study.

B. Organization and Objectives

The organization of the remainder of this work is as follows. In Chapter II we discuss

the properties of the analytic transport equation. We begin by reducing the energy and

time dependent transport equation to a series of energy and time independentwithin-group

problems which are the basis of the numerical methods we develop. We then derive several

second-order forms of the transport equation and discuss their characteristics. We discuss

the behavior of the transport equation in certain physical limits and briefly describe the

iterative methods necessary to solve the within-group scattering problem. We conclude the

chapter with a short discussion of angular discretization methods.

In Chapter III, we derive the CFEM approximations to the parity equations and the

SAAF equation. We then discuss the formal relationship between the CFEM approxima-

tion to the SAAF equation and the average of the even- and odd-parity CFEM systems,

which turn out to be identical except on the boundaries. We analyze the behavior of these

discretizations in the thick diffusive limit and at the interface between a diffusive and a

non-diffusive region. We conclude with a discussion of certain implementational problems

we have observed. These problems partially motivate the MFEM approach we propose in

Chapter IV.

Chapter IV focuses on the application of mixed finite element methods to transport

problems. We apply the Raviart-Thomas [40] method to both the coupled first order parity
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equations and to a coupled set of transport equations for the full range angular flux. We

then analyze these discretizations in certain physical limits and discuss their behavior and

performance.

Chapter V details how we developed and implemented diffusion synthetic acceleration

for the spatial discretizations discussed in Chapters III and IV. We present numerical results

that support our analyses for both slab and XY geometry problems in Chapter VI. Finally,

we summarize our main conclusions and discuss directions for fruitful future research in

Chapter VII.

Our main purpose in this dissertation is to develop transport discretizations that are ac-

curate and efficient. We consider important practical issues such as memory requirements

and suitability for parallel implementation in terms of both scalability and spatial and an-

gular domain decomposition. At the conclusion of our work, we hope to have achieved the

following objectives:

� an improved theoretical understanding of finite element discretizations of second-

order forms of the transport equation,

� the development of efficient and stable synthetic acceleration methods for these dis-

cretizations,

� a complete understanding of the relationship between the parity equations and the

SAAF,

� the application of powerful mixed finite element methods to transport problems,

� the identification of optimal discretization methods for specific problem types, and

� a clear direction for fruitful future research in this area.
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CHAPTER II

SPATIALLY CONTINUOUS TRANSPORT PROBLEMS

In this chapter we introduce the linear Boltzmann transport equation and its boundary con-

ditions. We derive several second order forms of the transport equation and discuss their

properties. We also present two coupled first order transport formulations that are the basis

of the mixed finite element methods we develop in Chapter IV. We then review the be-

havior of the analytic transport equation for thick diffusive problems. We conclude this

chapter with a discussion of the iterative methods used to solve the within group scattering

problem.

A. The Transport Equation

The linear transport equation is derived in numerous reactor theory [41, 42] and transport

theory [43, 44, 45] textbooks. It is an integro-differential equation with up to seven inde-

pendent variables. Solutions of transport problems satisfy elliptic, parabolic or hyperbolic

equations in various legitimate physical limits. Despite its complexity, it is simply a math-

ematical expression of particle (e.g. neutrons or photons) balance:

1
v(E)

∂Ψ
∂t

+Ω �∇Ψ

+σt(r ;E)Ψ(r ;Ω;E; t) =
Z

4π

∞Z

0

σs(r ;Ω0 ! Ω;E0! E)Ψ(r ;Ω0;E0; t)dΩ0dE0

+Qe(r ;Ω;E; t) for r 2 D: (2.1)

Herer , Ω, E, andt are the position, direction, energy and temporal variables, respectively,

v(E) is the particle speed,σt andσs are the total and scattering cross sections, andQe is

the external source.D is an arbitrary spatial domain with a non-reentrant boundary∂D and
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∂DD

Ω

r

(x)

n

(y)

(z)

Fig. 1. An arbitrary spatial domain in Cartesian coordinates.

a unit outward normaln as shown in Fig. 1.

Theangular flux, Ψ, is the product of the density of particles at a point in phase space

and their speed so that:

σt(r ;E)| {z }
interactions
particle�cm

�Ψ(r ;Ω;E; t)| {z }
particles

cm3
�sr�eV

cm
second

� dr|{z}
cm3

� dΩ|{z}
sr

� dE|{z}
eV

= Reaction Rate| {z }
interactions

second

represents the expected rate at which interactions with the background media occur indr

aboutr, dΩ aboutΩ, anddE aboutE at timet.

We note that all time and energy dependent transport problems can be reduced by

implicit time differencing [45] and the multigroup approximation [42, 45] to a series of

one-group, steady-state problems that are referred to aswithin-groupproblems. At this

point, we will also make the assumption that sources and scattering are isotropic. While

this assumption is valid for many physical problems, we will point out when the presence

of anisotropy affects our methods or analyses. Thus, we arrive at the form of the transport
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equation that will be the basis for our spatial discretizations:

Ω �∇Ψ+σt(r)Ψ(r ;Ω) =
1

4π

h
σs(r)

Z

4π

Ψ(r ;Ω)dΩ+Q(r)
i

for r 2 D: (2.2)

The source,Q, now consists of both the external source and the known scattering source

from other energy groups.

We will often use the following definitions. Thescattering ratiois defined as the ratio

of the scattering and total cross section:

c=
σs

σt
(2.3)

Thescalar fluxis defined as the angular integral of the angular flux:

Φ(r) =
Z

4π

Ψ(r ;Ω)dΩ: (2.4)

Theangular current densityis the product of the angular flux and the direction of particle

propagation:

G(r ;Ω) = ΩΨ(r ;Ω): (2.5)

Finally, thecurrent is defined as the angular integral of the angular current density:

J(r) =
Z

4π

G(r ;Ω)dΩ: (2.6)

Physically,J(r) �ndS is the net rate at which particles pass through a surfacedSwith an

outward normaln.

The streaming term,Ω �∇Ψ, in equation (2.2) involves only first order spatial deriva-

tives. For that reason we will refer to equation (2.2) as thefirst order formof the transport

equation.
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1. Boundary Conditions

We must also provide appropriate boundary conditions for the transport equation. Most

frequently, the known incident angular flux is specified on all or part of the boundary:

Ψ(r ;Ω) = F(r ;Ω) for r 2 ∂Di andn �Ω < 0: (2.7)

Symmetries in the spatial domain can result in reflective boundary conditions:

Ψ(r ;Ω) = Ψ(r ;Ω0) for r 2 ∂Dr andn �Ω < 0; (2.8)

whereΩ0 is the angle that reflects ontoΩ at positionr 2 ∂Dr . Albedo boundary conditions

set the angular flux entering a region through∂Da as a weighted integral of the angular flux

leaving that region through∂Da:

Ψ(r ;Ω) =
Z

n�Ω0>0

α(r ;Ω �Ω0)Ψ(r ;Ω0)dΩ for r 2 ∂Da andn �Ω < 0: (2.9)

2. The Balance Equation

The so-calledbalance equationis the angular integral of equation (2.2):

∇ �J(r)+σa(r)Φ(r) = Q(r): (2.10)

If we integrate the balance equation over any spatial domain we arrive at a precise mathe-

matical expression for particle conservation within that domain. For example, consider an

arbitrary volumeD. We integrate equation (2.10) over this domain to obtain:

Z
D

∇ �J(r)dV+
Z

D
σa(r)Φ(r)dV =

Z
D

Q(r)dV: (2.11)

We can apply Green’s theorem to obtain:

Z
∂D

J(r) �ndS+
Z

D
σa(r)Φ(r)dV =

Z
D

Q(r)dV: (2.12)
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This is an interesting result. Despite the fact that the current and the scalar flux are both

derived from the same scalar variable (the angular flux), the most physically appealing

expression for particle balance involves vector and scalar unknowns that are not spatially

co-located. This apparent antinomy will partially motivate our development of mixed finite

element transport methods.

3. Angular Discretization

We have yet to discuss the discretization of the angle variable. We will continue without

invoking an angular discretization for notational simplicity. Thus, the results of our analy-

ses can be thought to apply when the specified angular discretization resolves the angular

variations of the solution to the problem being considered.

In practice, we will use the standard discrete ordinates method [46, 45]. In this ap-

proximation, angular integrals are replaced with discrete sums:

Z

4π

f (Ω)dΩ!
N

∑
n=1

f (Ωn)hn;

whereΩn are the quadrature points (directions) andhn are the quadrature weights. If the

problems of interest are thick and diffusive then the quadrature set should exactly integrate

at least linear and quadratic polynomials of the direction cosinesΩx, Ωy, andΩz to re-

solve the angular shape of the solution in the problem interior. This can be understood by

recalling that, in a diffusive problem, the angular flux is a linear function of angle. To com-

pute the first angular moment of a linear function, we must be able to integrate quadratic

polynomials.
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B. Second Order Forms

In this section, we will derive three independent second order equations. By this, we mean

equations whose streaming operator involves second order spatial derivatives. We note that

the even- and odd-parity equations have as their fundamental unknowns the even- and odd-

angular components of the angular flux. Thus, in solving these equations we need only

consider half of the angular domain. The SAAF equation, on the other hand, has the full

range angular flux as its fundamental unknown.

1. The Even- and Odd-Parity Equations

The even- and odd-parity equations have been the basis for a wide variety of numerical

transport methods [47, 48, 16, 1, 14, 49, 21, 18, 19, 12, 24, 37, 23, 50]. Our derivation will

follow the standard procedure [45] for the most part, though our treatment of boundary

conditions follows Adams [1]. We begin the derivation of the parity equations by defining

the even-parity angular flux,Ψ+, and the odd-parity angular flux,Ψ�, as:

Ψ+(r ;Ω) = [Ψ(r ;Ω)+Ψ(r ;�Ω)]; (2.13a)

Ψ�(r ;Ω) = [Ψ(r ;Ω)�Ψ(r ;�Ω)]: (2.13b)

It is easy to see that the angular flux is simply the sum of the even- and odd-parity fluxes:

Ψ(r ;Ω) = Ψ+(r ;Ω)+Ψ�(r ;Ω); (2.14)

and that the scalar flux and current can be recovered from the parity angular fluxes with the

following half-range angular integrals:

Φ(r) = 2
Z

2π

Ψ+(r ;Ω)dΩ; (2.15a)
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J(r) = 2
Z

2π

ΩΨ�(r ;Ω)dΩ: (2.15b)

Now, if we write first order transport equation for the+Ω direction and the�Ω di-

rection then add and subtract the results, we obtain the following coupled set of equations:

Ω �∇Ψ�(r ;Ω)+σt(r)Ψ+(r ;Ω) =
σs(r)Φ(r)+Q(r)

4π
; (2.16a)

Ω �∇Ψ+(r ;Ω)+σt(r)Ψ�(r ;Ω) = 0: (2.16b)

We solve equation (2.16b) forΨ�:

Ψ�(r ;Ω) =� 1
σt(r)

Ω �∇Ψ+(r ;Ω); (2.17)

and substitute that result into equation (2.16a) to obtain a single equation forΨ+:

�Ω �∇ 1
σt

Ω �∇Ψ++σtΨ+ =
σsΦ+Q

4π
: (2.18)

Φ can be recovered from the even-parity angular flux via equation (2.15a). Similarly, we

can solve equation (2.16a) forΨ+:

Ψ+(r ;Ω) =
σs(r)Φ(r)+Q(r)

4πσt
� 1

σt
Ω �∇Ψ�(r ;Ω); (2.19)

and substitute that result into equation (2.16b) to obtain an equation involving bothΨ� and

Φ:

�Ω �∇ 1
σt

Ω �∇Ψ�+σtΨ� = Ω �∇
�σsΦ+Q

4πσt

�
: (2.20a)

Unlike the even-parity case, here we need another equation to relateΨ� andΦ. Therefore,
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we integrate equation (2.16a) over angle to obtain:

∇ �J+σtΦ = σsΦ+Q; (2.20b)

whereJ is given by equation (2.15b). Finally, we note that if anisotropic scattering were

present we would need a second equation to relate even-parity angular flux to the current.

Now we must address boundary conditions. We manipulate the known incident bound-

ary condition into a form that can be incorporatednaturally into finite element discretiza-

tions. From equations (2.7), (2.14) and (2.17) we see that forr 2 ∂Di andn �Ω < 0:

Ψ(r ;Ω) = F(r ;Ω)

Ψ+(r ;Ω)+Ψ�(r ;Ω) = F(r ;Ω)

Ψ+(r ;Ω)� 1
σt

Ω �∇Ψ+(r ;Ω) = F(r ;Ω): (2.21)

For r 2 ∂Di, it is obvious that:

1
σt

Ω �∇Ψ+(r ;Ω) =
h
Ψ+(r ;Ω)�F(r ;Ω)

i
for n �Ω < 0

= �
h
Ψ+(r ;Ω)�F(r ;�Ω)

i
for n �Ω > 0:

If we make the even angular extension ofF(r ;Ω) for outgoing angles:

F+(r ;Ω) =

8>><
>>:

F(r ;Ω) for n �Ω < 0

F(r ;�Ω) for n �Ω > 0

we can write the boundary condition for all angles in the following compact form:

(n �Ω)
� 1

σt
Ω �∇Ψ+

�
=�jn �Ωj

�
Ψ+�F+

�
for r 2 ∂Di: (2.22)

We follow a similar procedure to the derive the odd-parity boundary condition. Here,
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we have forr 2 ∂Di:

1
σt

Ω �∇Ψ�(r ;Ω)� σsΦ+Q
4πσt

=
h
Ψ�(r ;Ω)�F(r ;Ω)

i
for n �Ω < 0

=
h
�Ψ�(r ;Ω)�F(r ;�Ω)

i
for n �Ω > 0:

Then, if we make the odd angular extension ofF(r ;Ω):

F�(r ;Ω) =

8>><
>>:

F(r ;Ω) for n �Ω < 0

�F(r ;�Ω) for n �Ω > 0

we obtain the desired form of the odd-parity boundary condition:

(n �Ω)
� 1

σt
Ω �∇Ψ�� σsΦ+Q

4πσt

�
=�jn �Ωj(Ψ��F�) for r 2 ∂Di: (2.23)

To summarize, we rewrite the even- and odd-parity equations and their boundary con-

ditions. The even-parity system is:

�Ω �∇ 1
σt

Ω �∇Ψ++σtΨ+ =
σsΦ+Q

4π
; (2.24a)

(n �Ω)
� 1

σt
Ω �∇Ψ+

�
=�jn �Ωj

�
Ψ+�F+

�
for r 2 ∂D: (2.24b)

The odd-parity system is:

�Ω �∇ 1
σt

Ω �∇Ψ�+σtΨ� = Ω �∇
�σsΦ+Q

4πσt

�
; (2.25a)

∇ �J+σtΦ = σsΦ+Q; (2.25b)

(n �Ω)
� 1

σt
Ω �∇Ψ�� σsΦ+Q

4πσt

�
=�jn �Ωj(Ψ��F�) for r 2 ∂D: (2.25c)

Equations (2.24) and (2.25) completely specify the parity systems that we will discretize in
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Chapter III. Note that we have replaced∂Di with ∂D. That is, we will only consider known

incident boundary conditions in the remainder of this work. Reflective boundary conditions

result in fully implicit coupling between the incoming and outgoing directions. This is not

the case for first order forms of the transport equation and is a significant disadvantage of

the parity equations.

2. The Self-Adjoint Angular Flux Equation

The so-called self-adjoint angular flux equation has recently been suggested as a basis for

numerical transport methods [4]. Though this equation was initially proposed in the context

of improving standardP1 theory [7] in the early 1960s, it has received little attention. Ack-

royd [47] identified the SAAF through a least-squares solution procedure for the first order

transport equation. We stress that the fundamental unknown in the SAAF is the full-range

angular flux.

The derivation presented by Morel and McGhee [4] is simple. We rearrange the first

order transport equation:

Ψ =
σsΦ+Q

4πσt
� 1

σt
Ω �∇Ψ;

and substitute this back into the streaming term of the transport equation to obtain the

self-adjoint angular flux equation:

�Ω �∇ 1
σt

Ω �∇Ψ+σtΨ =
σsΦ+Q

4π
�Ω �∇

�σsΦ+Q
4πσt

�
: (2.26)

We note that it is of the same basic form as the parity equations. Further, since the fun-

damental unknown is simply the angular flux, we need not manipulate the boundary con-

ditions. That means that all of the boundary conditions, including reflective boundary

conditions, can be implemented in the same way they are for the first order transport equa-

tion. We must, however, also specify boundary conditions foroutgoingangles. We simply
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require that the outgoing angular flux on the boundary satisfy the first order form of the

transport equation:

Ω �∇Ψ(r ;Ω)+σtΨ(r ;Ω) =
σsΦ(r)+Q(r)

4π
for r 2 ∂D andn �Ω > 0: (2.27)

This is analogous to the extensions of the boundary data we make for the even- and odd-

parity equations, and is discussed more fully in the next section.

3. General Properties of Second Order Forms of the Transport Equation

There are several unique characteristics of second order forms of the transport equation

that we should be consider before proceeding. As we have already noted, the streaming

operators now involve second derivatives. The first order within-group equation is a hyper-

bolic first order partial differential equation, while the parity equations and SAAF equation

are parabolic second order PDEs. This has two important consequences. First, the second

order equations actually have more possible solutions than the first order system. For a

purely absorbing, within-group slab problem, the first order equation has a solution of the

form Ae�σt x=µ while the second order forms admit bothAe�σtx=µ andBeσtx=µ. Second, cor-

respondingly more boundary conditions are required to damp the non-physical solutions.

This is the reason we must enforce boundary conditions for outgoing angles in second order

formulations.

Since the second order systems involve boundary conditions for outgoing directions,

it is possible for discretized forms to violate directional causality. That is, it is possible for

solutions in one region of a problem to depend non-physically upon downstream informa-

tion.

The presence of the total cross section in the denominator of the streaming term makes

the treatment of voids difficult. This has been considered by Ackroyd, Issa and Riyait [47]

with some success. It is clear, however, that this is a significant disadvantage peculiar to
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second order forms of the transport equation.

Finally, discretizations of second order forms of the transport equation typically re-

quire the inversion of SPD matrices, whereas first order forms often lead to block-lower

triangular matrices that can be solved very rapidly by sweeping methods. Whether this is

an advantage or disadvantage depends on the type of problem being considered. For exam-

ple, on an unstructured mesh in 3D, it may be very difficult to sweep the mesh even with

serial algorithms. Additionally, efficient parallel implementations of sweeping routines on

grids of this type have yet to be developed, so it may, in fact, be more efficient to use well-

established parallel iterative methods on the SPD matrices that result from second order

transport discretizations.

C. Coupled First Order Forms

We now briefly discuss the coupled first order systems of equations that will be the bases of

the mixed finite element transport discretizations that we will develop in Chapter IV. One

factor motivating the forms we consider is that they should allow vector current unknowns

to be spatially located on cell faces and scalar flux unknowns to be located in cell centers.

1. The Coupled Parity Equations

Our starting point will be the coupled even- and odd-parity system in equations (2.16). We

define the odd-parity angular current density to be:

G�(r ;Ω) = ΩΨ�(r ;Ω); (2.28)

then multiply equation 2.16b byΩ to obtain:

∇ �G�+σtΨ+ =
σsΦ+Q

4π
; (2.29a)
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∇ �ΩΩΨ++σtG� = 0: (2.29b)

To obtain the appropriate boundary condition, we simply multiply equation (2.25c) byΩ:

(n �Ω)Ω
� 1

σt
∇ �G�� σsΦ+Q

4πσt

�
=�jn �Ωj(G��ΩF�) for r 2 ∂D: (2.29c)

To our knowledge, no numerical transport methods have been based upon equations (2.29).

The fundamental unknowns in this system are the even-parity angular flux,Ψ+, and odd-

parity angular current density,G�. The odd-parity angular flux can be recovered fromG�

with the following relation:

Ψ�(r ;Ω) = Ω �G�(r ;Ω);

sinceΩ �Ω = 1.

2. The Angular Flux-Angular Current Density Equations

We now consider a method for recasting the first order transport equation into a coupled sys-

tem of equations involving a scalar and a vector unknown. First, we rewrite equation (2.2)

using the definition of the angular current density in equation (2.5) then we multiply equa-

tion (2.2) byΩ to obtain a coupled set of equations with the angular flux and angular current

density as their unknowns:

∇ �G+σtΨ =
σsΦ+Q

4π
(2.30a)

∇ �ΩΩΨ+σtG = Ω
σsΦ+Q

4π
(2.30b)

We will refer to equations (2.30) as the angular flux-angular current density (AFACD)

equations. We note that if we were to assume that the angular flux was linearly anisotropic

and integrate equations (2.30) over angle, we would obtain the standardP1 equations. The
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boundary condition for equation (2.30b) is written in a form that allows us to incorporate it

naturally in a finite element system. That is, forr 2 ∂D:

Gb(r ;Ω) = ΩΨ(r ;Ω) =

8>><
>>:

ΩF(r ;Ω) for n �Ω < 0

G for n �Ω > 0:

(2.30c)

The condition forn �Ω > 0 corresponds to requiring the angular flux to satisfy the first

order transport equation for outgoing directions. Reflective boundary conditions can be

incorporated by simply settingF(r ;Ω) equal toΨ(r ;Ω0) whereΩ0 is the direction that

reflects ontoΩ at the pointr .

D. The Asymptotic Diffusion Limit of the Transport Equation

The asymptotic behavior of the analytic transport equation for thick diffusive problems

is well established [51, 25, 52, 30]. Adams [1] extended analyses of this type to include

problems that contain adjacent diffusive and non-diffusive regions. In this section, we will

review the properties of the analytic transport equation for problems that contain regions

that are optically thick and diffusive.

1. Solution of the Transport Equation in the Diffusion Limit

Let us again consider the first order within-group transport equation with a known incident

boundary condition:

Ω �∇Ψ+σt(r)Ψ(r ;Ω) =
σs(r)Φ(r)+Q(r)

4π
for r 2 D; (2.31a)

Ψ(r ;Ω) = F(r ;Ω) for r 2 ∂D andn �Ω < 0: (2.31b)
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We now introduce the following scaling:

σt ! σt

ε
(2.32a)

σa ! εσa (2.32b)

σs ! σt

ε
� εσa (2.32c)

Q ! εQ; (2.32d)

whereσt , σa andQ are all O(1). Thus, asε ! 0 the total cross section becomes very large

so that a problem of fixed physical dimensions becomes thick in terms of particle mean

free paths. Further, the rates at which particles are added to the system through sources

and removed from the system through absorption become small. Physically, we expect

these conditions to result in a diffusive particle transport problem. This particular scaling

possesses several important properties [29] that make this heuristic argument more precise.

First, the infinite medium solution,Q=σa, and the diffusion length,(3σaσt)�
1
2 , are both

O(1). More importantly, the diffusion equation itself isinvariant under this scaling. Now

we apply the above scaling to equation (2.31a):

Ω �∇Ψ+
σt

ε
Ψ =

�σt
ε � εσa

�
Φ+ εQ

4π
: (2.33)

We propose the following ansatz for our solution:

Ψ = Ψ[0]+ εΨ[1]+ ε2Ψ[2]+ :::; (2.34a)

Φ = Φ[0]+ εΦ[1]+ ε2Φ[2]+ ::: whereΦ[k] =
Z

4π

Ψ[k]dΩ: (2.34b)



22

We insert the ansatz into the scaled transport equation and require the resulting equations

to hold for terms of like order. The O(1=ε) equation is:

σtΨ[0] =
σtΦ[0]

4π
: (2.35)

Thus, our first important result is that the leading order angular flux is isotropic. Now, we

write the O(1) equation:

Ω �∇Ψ[0]+σtΨ[1] =
σtΦ[1]

4π
; (2.36)

and take its first angular moment to obtainFick’s Law:

J[1](r) =� 1
3σt

∇Φ[0](r) where we have definedJ[k] =
Z

4π

ΩΨ[k]dΩ: (2.37)

The O(ε) equation is:

Ω �∇Ψ[1]+σtΨ[2] =
σtΦ[2]�σaΦ[0]+Q

4π
: (2.38)

Finally, we take the zeroth angular moment of the O(ε) equation and use equation (2.37) to

find that the leading order scalar flux satisfies the following diffusion equation:

�∇ � 1
3σt

∇Φ[0]+σaΦ[0] = Q: (2.39a)

Equation (2.39a) describes the behavior of the leading order solution in the problem inte-

rior. Now, we must determine what boundary condition the leading order equation satisfies.

First, we note that there is a complicated boundary layer of thickness O(ε). We make no

attempt, however, to explicitly model the boundary layer. Rather, we derive a boundary

value that yields the correct interior solution. This is facilitated by recognizing that the

boundary layer in a thick diffusive problem is described by a purely scattering half-space

problem [51, 25, 52, 30]. Analytic solutions to such problems do exist [53]. The resulting
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boundary condition is given by:

Φ[0](r) = 2
Z

n�Ω<0

W(jn �Ωj) f (r ;Ω)dΩ for r 2 ∂D: (2.39b)

W(jn �Ωj) depends on Chandrasekhar’sH-function and is well approximated by a simple

polynomial:

W(jn �Ωj) =
p

3
2
jn �ΩjH(jn �Ωj)' jn �Ωj+ 3

2
jn �Ωj2: (2.39c)

In summary, the leading order solution of the transport equation (a first order hy-

perbolic equation) satisfies the diffusion equation (a second order elliptic equation) as the

scaling parameterε! 0. Further, despite the presence of a complicated boundary layer, we

can obtain the correct interior solution by using a simple weighted integral of the known

incident angular flux. While this is an intuitive result, the implications for discretized prob-

lems are significant. A discrete transport solution will not be accurate for thick diffusive

problems unless its leading order solution satisfies a reasonable discretization of the diffu-

sion system shown in equations (2.39) [29].

2. Solution of the Transport Equation at an Internal Interface

We now turn our attention to an idealized problem containing adjacent diffusive and non-

diffusive regions as shown in Fig. 2. This analysis was originally performed by Adams [1].

We denote the boundary between the two regions as∂Ddt with a normalnd that points out

of the diffusive region and into the transport region. We also definent as�nd, so that it

points out of the transport region and into the diffusive region.

We begin by applying the scaling shown in equation (2.34) to the diffusive portion of

the problem. We then simply note that our results in the previous section directly apply to
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Fig. 2. An arbitrary spatial domain with an internal interface.

the leading order solution in this region. These are:

σtΨ[0] =
σtΦ[0]

4π
for r 2 Dd (2.40a)

�∇ � 1
3σt

∇Φ[0]+σaΦ[0] = Q for r 2 Dd (2.40b)

Φ[0](r) = 2
Z

nd�Ω<0

W(jnd �Ωj)Ψ[0](r ;Ω)dΩ for r 2 ∂Ddt: (2.40c)

In this expression,Ψ[0](r ;Ω) is the as yet unknown angular flux leaving the transport re-

gion and entering the diffusive region. Now, we consider the transport region. Obviously,

since we do not apply the diffusion scaling to the transport equation in this region, the

leading order solution satisfies the transport equation. The development of the boundary

condition is more involved. Here we must determine the value of the angular flux entering

Dt through∂Ddt as a function of the flux leavingDt through∂Ddt. To leading order this

is corresponds to the problem of determining the albedo of a half-space, which has been
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solved analytically [43]. Therefore we have:

Ω �∇Ψ[0]+σtΨ[0] =
σtΦ[0]+Q

4π
; (2.41a)

subject to an albedo condition forr 2 ∂Ddt andnt �Ω < 0

Ψ[0](r ;Ω) =
1

2π

Z

nt �Ω0>0

α(µ;µ0)Ψ[0](r ;Ω0)dΩ0 whereµ= jnt �Ωj: (2.41b)

The albedo,α(µ;µ0), is given by:

α(µ;µ0) =
hW(µ0)

µ+µ0

i.h 1Z

0

W(y)
y+µ

dy
i

where 0� µ;µ0 � 1: (2.42)

W(µ) is the weight function shown equation (2.39c). Note that the albedo boundary condi-

tion is a function of both the incoming and outgoing angle.

E. The Within Group Iteration

As we have noted, the transport equation is an integro-differential equation that is usually

solved iteratively whenσs> 0. In this section, we will discuss issues related to the iterative

solutions of such problems.

1. Source Iteration

Let us consider the slab geometry transport equation:

µ
∂
∂x

Ψ+σtΨ(x;µ) =
1
2

σsΦ(x)+
1
2

Q(x) whereµ= Ω �ex; (2.43a)

Φ(x) =
Z 1

�1
Ψ(x;µ)dµ: (2.43b)

A very simple approach for solving equations (2.43) would be to guess the value of the

scalar flux (Φ(0)(x) = 0, for example), solve equation (2.43a) for the angular flux, then use
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equation (2.43b) to update the scalar flux:

µ
∂
∂x

Ψ(`+1=2)+σtΨ(`+1=2)(x;µ) =
1
2

σsΦ(`)(x)+
1
2

Q(x); (2.44a)

Φ(`+1)(x) =
Z 1

�1
Ψ(`+1=2)(x;µ)dµ: (2.44b)

This process is known assource iterationand is closely related to Neumann iteration [44,

45]. When source iteration (SI) is applied to a discretized system, it is, in fact, equivalent

to stationary Richardson iteration [54]. We will discuss this in more detail in Chapter V.

The iteration described in equations (2.44) is carried out until some measure of the

error is less than a prescribed tolerance. Often, the infinity- or 2-norm of the relative differ-

ence between successive iterates is used as the error measure. The rate at which an iterative

method converges is governed by the spectral radius,ρ, which is the largest eigenvalue of

the iteration operator (or iteration matrix for discretized problems). IfΦ̂(`) = Φ�Φ(`) is

the difference between the exact solution and the current iterate, we may write:

ρ� kΦ̂(`+1)k2

kΦ̂(`)k2
for large`: (2.45)

In practice, since we do not know the exact solutiona priori, we will often use the following

relation to estimate the spectral radius:

ρ'
s

kΦ(`+1)�Φ(`)k2

kΦ(`�1)�Φ(`�2)k2
: (2.46)

If we assume that the angular and spatial portions of the solution to equations (2.43)

are separable then we can determine the spectral radius of SI analytically with an infinite

medium Fourier analysis. We assume constant material properties and define the iteration
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errors:

Ψ̂(`+1=2) = Ψ�Ψ(`+1=2); (2.47a)

Φ̂(`) = Φ�Φ(`); (2.47b)

whereΨ andΦ are the converged angular and scalar fluxes, respectively. We now subtract

equations (2.44) from (2.43) to obtain:

µ
∂
∂x

Ψ̂(`+1=2)+σtΨ̂(`+1=2)(x;µ) =
cσt

2
Φ̂(`)(x); (2.48a)

Φ̂(`+1)(x) =
Z 1

�1
Ψ̂(`+1=2)(x;µ)dµ; (2.48b)

where we have noted thatcσt = σs At this point, we insert the standard Fourier ansatz:

Ψ̂(`+1=2) = ω`(λ)a(λ;µ)eıλσt x; (2.49a)

Φ̂(`) = ω`(λ)A(λ)eıλσt x (2.49b)

where

ı =
p�1 and�∞ < λ < ∞: (2.49c)

After substituting the above ansatz into equations (2.48), we find that:

a(λ;µ) =
cA(λ)

2
1

1+ ıλµ
; (2.50)

and

ω(λ) = c
Z 1

0

dµ
1+λ2µ2 : (2.51)
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Therefore, the SI spectral radius is:

ρsi = sup
λ
jω(λ)j = c for λ = 0: (2.52)

This means that for highly scattering problems (c close to unity), source iteration can con-

verge very slowly. We note that theλ = 0 mode is not present in finite problems, so source

iteration will converge forc� 1, though the iteration eigenvalues remain near unity for

small values ofλ. This analysis also shows that the eigenfunctions associated with the

slowest converging modes are nearly linear functions of angle [36]. That is:

a(λ;µ) =
cA(λ)

2
1

1+ ıλµ
' cA(λ)

2
(1� ıλµ) for λ near 0: (2.53)

There is an insightful physical principle underlying the convergence behavior of the

source iteration system. If we begin our SI solution by guessingΦ(0)(x) = 0, thenΦ(`)(x)

represents the scalar flux due to particles that have had no more than`�1 collisions since

birth. For a thick, diffusive problem, particles will undergo many collisions prior to being

absorbed or leaking from the system, so we expect` to become very large beforeΦ(`)(x)

reaches the correct solution.

2. Diffusion Synthetic Acceleration

The diffusion synthetic acceleration (DSA) method [32, 33, 34, 35, 55, 56, 36, 57] is a well

known and powerful method for accelerating the convergence of the within group iteration.

It is motivated by the fact that the slowest converging error modes in equations (2.44) are

linear in angle.

We begin be defining the following additive corrections:

γ(`+1=2)(x;µ) = Ψ(x;µ)�Ψ(`+1=2)(x;µ); (2.54a)
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Γ(`+1=2)(x) = Φ(x)�Φ(`+1=2)(x)
�
=

Z 1

�1
γ(`+1=2)(x;µ)dµ

�
; (2.54b)

where

Φ(`+1=2)(x) =
Z 1

�1
Ψ(`+1=2)(x;µ)dµ:

Now, we subtract equation (2.44a) from (2.43a) to obtain an equation for the additive cor-

rections. We stress that this equation is exact and is as difficult to solve as the original

problem. We have:

µ
∂
∂x

γ(`+1=2)+σtγ(`+1=2)(x;µ)� cσt

2
Γ(`+1=2)(x) =

cσt

2

h
Φ(`+1=2)(x)�Φ(`)(x)

i
(2.55)

Now, we make use of the observation in the previous section that the slowest converging

error modes are nearly linear in angle. Thus, they would be well approximated by a dif-

fusion solution. This suggests that we simply replace equation (2.55) with its diffusion

approximation. The DSA iterative scheme may then be written in the following form:

µ
∂
∂x

Ψ(`+1=2)+σtΨ(`+1=2)(x;µ) =
1
2

σsΦ(`)(x)+
1
2

Q(x); (2.56a)

Φ(`+1=2)(x) =
Z 1

�1
Ψ(`+1=2)(x;µ)dµ; (2.56b)

� ∂
∂x

1
3σt

∂
∂x

Γ(`+1=2)+σt(1�c)Γ(`+1=2)(x) = cσt

h
Φ(`+1=2)(x)�Φ(`)(x)

i
(2.56c)

Φ(`+1)(x) = Φ(`+1=2)(x)+Γ(`+1=2)(x): (2.56d)

Equations (2.56) have been analyzed [36] and we will simply report the results:

ω(λ) =
λ2c

λ2+3(1�c)

Z 1

�1

1�3µ2

1+λ2µ2 dµ: (2.57)
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Fig. 3. Slab geometry DSA/SI iteration eigenvalues with c=1.

Therefore, the DSA spectral radius is:

ρdsa= sup
λ
jω(λ)j � 0:2247c: (2.58)

The DSA iteration eigenvalues are shown along with the correspond SI iteration eigenval-

ues in Fig. 3. Clearly, DSA significantly improves the convergence of the within-group

iteration. For example, suppose we have a problem with a scattering ratio of 0.99999. If

the error needs to be reduced by a factor of 105, then the approximate number for iterations

is:

Nsi ' ln(10�5)

ln(0:99999)
= 1;150;000 iterations:

For the DSA method, the approximate number of iterations is:

Ndsa'
ln(10�5)

ln(0:2247)
= 8 iterations:
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Clearly, DSA can be an extremely powerful acceleration scheme, reducing the number of

iterations in our example by 5 orders of magnitude.

Adams and Wareing [57] have analyzed DSA for more general multidimensional spa-

tially analytic problems. They found that in 2D and 3D, the DSA spectral radius is bounded

by 0.5. Further, they found that DSA becomes unstable for highly forward peaked scatter-

ing or if the angular quadrature set does not exactly integrate linear functions of angle.

Finally, if the within-group problem is symmetric positive definite under some norm, es-

tablished methods like the preconditioned conjugate gradient method can be successfully

applied.

In this chapter we have discussed the properties of the first order form of the transport

equation and derived the second order forms that we discretize in Chapters III and IV.

We have also discussed the behavior of the transport equation in thick diffusive problems

and outlined the iterative solution techniques used for the within-group problem. We now

prepared to begin our discretization and analysis.
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CHAPTER III

CONTINUOUS FINITE ELEMENT DISCRETIZATION AND ANALYSIS

In this chapter, we develop the continuous finite element approximations to the parity equa-

tions and the SAAF equation. For each system, we begin in general 3D Cartesian geometry

then reduce to slab geometry. We then show that the sum of the discretized parity equa-

tions is algebraically equivalent to the discretized SAAF equation in the problem interior.

Further, we derive the relationship between the SAAF system and the parity equations

on boundaries. The behavior of the discretized systems is analyzed in the thick diffusion

limit for both completely diffusive problems and problems with adjacent diffusive and non-

diffusive regions. We conclude this chapter with a discussion of several issues that arise

during implementation and partially motivate the mixed finite element discretization we

discuss in Chapter IV.

We use upper caseF(r ;Ω) and Q(r ;Ω) for the analytic known incident boundary

condition and source. In this chapter, the lower casef (r ;Ω) andq(r ;Ω) denote the pro-

jections of these functions onto the appropriate finite element spaces. It is important to

expandq(r ;Ω) in the same space as the within-group scattering source since it can contain

inscattering information from other energy groups.

A. Even-Parity

We now use the weighted residual method to develop the even-parity CFEM discretization.

This involves multiplying the analytic even-parity equation by a set of weight functions

then requiring the resulting systems to hold in an integral sense over the problem domain.

We then expand the analytic unknowns in a series of basis functions, which ultimately

reduces our original problem to a system of linear equations. Recall the analytic within-
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group even-parity equation and its boundary condition, as shown in equation (2.24):

�Ω �∇ 1
σt

Ω �∇Ψ++σtΨ+ =
σsΦ+Q

4π
; (3.1a)

(n �Ω)
� 1

σt
Ω �∇Ψ+

�
=�jn �Ωj

�
Ψ+�F+

�
for r 2 ∂D: (3.1b)

Here,Ψ+ andΦ will naturally exist in the same finite element space upon discretization.

1. XYZ Geometry

We begin by multiplying equation (3.1a) by a set of linearly independent weight functions

(w+
i (r);1� i� I ). We then integrate over the problem domainD. For each weight function,

we obtain an equation of the form:

�
Z

D

Ω �∇ 1
σt

Ω �∇Ψ+w+
i dV+

Z

D

σtΨ+w+
i dV =

Z

D

σsΦ+Q
4π

w+
i dV: (3.2)

We now apply the vector identity

∇ � � f A
�
= f

�
∇ �A�+A � �∇ f ); (3.3)

to the streaming term of equation (3.2) to get:

�
Z

D

∇ �
�

w+
i Ω

1
σt

Ω �∇Ψ+
�

dV+
Z

D

(Ω �∇w+
i )

1
σt

(Ω �∇Ψ+)dV+
Z

D

σtΨ+w+
i dV

=

Z

D

σsΦ+Q
4π

w+
i dV: (3.4)
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Green’s theorem can be used on the first term of equation (3.4) to obtain:

�
Z

∂D

(n �Ω)
1
σt

Ω �∇Ψ+w+
i dS+

Z

D

(Ω �∇w+
i )

1
σt

(Ω �∇Ψ+)dV+
Z

D

σtΨ+w+
i dV

=

Z

D

σsΦ+Q
4π

w+
i dV: (3.5)

Now, we can incorporate the boundary condition, equation (3.1b), naturally:

Z

∂D

jn �Ωj
�

Ψ+�F+
�

w+
i dS+

Z

D

(Ω �∇w+
i )

1
σt

(Ω �∇Ψ+)dV+
Z

D

σtΨ+w+
i dV

=

Z

D

σsΦ+Q
4π

w+
i dV: (3.6)

We expand the analytic unknowns in series of basis functions (bj(r);1� j � I )

Ψ+(r ;Ω)' ψ+(r ;Ω) =
I

∑
j=1

ψ+
j (Ω)b+j (r); (3.7a)

Φ(r) ' φ+(r) =
I

∑
j=1

φ+
j b+j (r) whereφ+

j = 2
Z

2π

ψ+
j (Ω)dΩ; (3.7b)

and substitute them into equation 3.6. Thus we arrive at the even-parity CFEM system

which is a system ofI linear equations for the unkowns (ψ+
i ;1� i � I ):

Z

∂D

jn �Ωj(ψ+� f+)w+
i dS+

Z

D

(Ω �∇w+
i )

1
σt

(Ω �∇ψ+)dV+

Z

D

σtψ+w+
i dV

=
Z

D

σsφ++q+

4π
w+

i dV for i = 1::I : (3.8)

For each direction,Ω, this system has a sparse, symmetric coefficient matrix. We also

consider the important simplification known asmass matrix lumping[58]. This is a proce-

dure where the collision (ormass) term in equation (3.8) is diagonalized. In general, mass

lumping results in more robust linear systems, though at the cost of a slight decrease in
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Fig. 4. A slab geometry spatial mesh.

accuracy. We stress, however, that the order of the truncation error does not change. In this

approximation, we have:

Z

D

σtψ+w+
i dV! ψ+

i

Z

D

σtw
+
i dV;

and

Z

D

σsφ+

4π
w+

i dV! φ+
i

Z

D

σs

4π
w+

i dV:

2. Slab Geometry

As a concrete example, we evaluate the above system for the slab geometry case using

linear continuous finite elements and Galerkin weighting. That is, we use the well known

tent functionson the mesh shown in Figure 4 as our basis and weight functions. They are

given by:

w+
j+1=2 = b+j+1=2 =

8>>>>>><
>>>>>>:

(xj+3=2�x)=(xj+3=2�xj+1=2) for x2 (xj+1=2;xj+3=2)

(x�xj�1=2)=(xj+1=2�xj�1=2) for x2 (xj�1=2;xj+1=2)

0 otherwise

First, we consider the left and right boundary cells:

jµj(ψ+
1=2� f+l )�µ2

�ψ+
3=2�ψ+

1=2

σt1∆x1

�
+

σt1∆x1

3
ψ+

1=2+
σt1∆x1

6
ψ+

3=2

=
σs1∆x1

6
φ+

1=2+
σs1∆x1

12
φ+

3=2+
∆x1

6
q+1=2+

∆x1

12
q+3=2 for j = 1; (3.9a)
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and

jµj(ψ+
J+1=2� f+r )+µ2

�ψ+
J+1=2�ψ+

J�1=2

σt1∆x1

�
+

σtJ∆xJ

6
ψ+

J�1=2+
σtJ∆xJ

3
ψ+

J+1=2

=
σsJ∆xJ

12
φ+

J�1=2+
σsJ∆xJ

6
φ+

J+1=2+
∆xJ

12
q+J�1=2+

∆xJ

6
q+J+1=2 for j = J: (3.9b)

The interior cells are described by:

�µ2
�ψ+

j+3=2�ψ+
j+1=2

σt j+1∆xj+1
�

ψ+
j+1=2�ψ+

j�1=2

σt j∆xt j

�
+

σt j∆xj

6
ψ+

j�1=2+
�σt j∆xj

3
+

σt j+1∆xj+1

3

�
ψ+

j+1=2+
σt j+1∆xj+1

6
ψ+

j+3=2

=
σs j∆xj

12
φ+

j�1=2+
�σs j∆xj

6
+

σs j+1∆xj+1

6

�
φ+

j+1=2+
σs j+1∆xj+1

12
φ+

j+3=2

+
∆xj

12
q+j�1=2+

�∆xj

6
+

∆xj+1

6

�
q+j+1=2+

∆xj+1

12
q+j+3=2 for j = 2::J�1: (3.9c)

With mass matrix lumping, we obtain for the boundary cells:

jµj(ψ+
1=2� f+l )�µ2

�ψ+
3=2�ψ+

1=2

σt1∆x1

�
+

σt1∆x1

2
ψ+

1=2

=
σs1∆x1

4
φ+

1=2+
∆x1

4
q+1=2 for j = 1; (3.10a)

and

jµj(ψ+
J+1=2� f+r )+µ2

�ψ+
J+1=2�ψ+

J�1=2

σt1∆x1

�
+

σtJ∆xJ

2
ψ+

J+1=2

=
σsJ∆xJ

4
φ+

J+1=2+
∆xJ

4
q+J+1=2 for j = J: (3.10b)

In the problem interior, the lumped LCFEM system is:

�µ2
�ψ+

j+3=2�ψ+
j+1=2

σt j+1∆xj+1
�

ψ+
j+1=2�ψ+

j�1=2

σt j∆xj

�
+
�σt j∆xj +σt j+1∆xj+1

2

�
ψ+

j+1=2 =
�σs j∆xj +σs j+1∆xj+1

4

�
φ+

j+1=2

+
�∆xj +∆xj+1

4

�
q+j+1=2 for j = 2::J�1: (3.10c)
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For both the lumped and unlumped cases, these equations form a symmetric, tridiagonal

matrix problem.

B. Odd-Parity

We now apply the weighted residual procedure to the odd-parity system, which we repro-

duce here:

�Ω �∇ 1
σt

Ω �∇Ψ�+σtΨ� = Ω �∇
�σsΦ+Q

4πσt

�
; (3.11a)

∇ �
�

2
Z

2π

ΩΨ�dΩ
�
+σtΦ = σsΦ+Q; (3.11b)

(n �Ω)
� 1

σt
Ω �∇Ψ�� σsΦ+Q

4πσt

�
=�jn �Ωj(Ψ��F�) for r 2 ∂D: (3.11c)

In this case, we note that the analytic odd-parity system implies that the most natural finite

element space for the scalar flux is the space generated by the gradient of the odd-parity

angular flux space. We, therefore, propose different weight and basis functions forΨ� and

Φ.

1. XYZ Geometry

We begin by multiplying equation (3.11a) by a set of weight functions (w�
i (r);1� i � I )

and equation (3.11b) by a different set of weight functions (v�k (r);1� k� K). We then

integrate over the problem domain and obtain equations of the form:

�
Z

D

Ω �∇
� 1

σt
Ω �∇Ψ�� σsΦ+Q

4πσt

�
w�

i dV+
Z

D

σtΨ�w�
i dV = 0; (3.12a)
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Z

D

∇ �
�

2
Z

2π

ΩΨ�dΩ
�

v�k dV+
Z

D

σtΦv�k dV =
Z

D

(σsΦ+Q)v�k dV; (3.12b)

for each value ofi andk. Equation (3.12b) is in its final form. However, we must work on

equation (3.12a) in order to insert the boundary condition, equation (3.11c), naturally. This

procedure is identical to the one we followed in developing the even-parity CFEM system.

Using identity 3.3 on the streaming term, we obtain:

�
Z

D

∇ �
h
w�

i Ω
� 1

σt
Ω �∇Ψ�� σsΦ+Q

4πσt

�i
dV+

Z

D

(Ω �∇w�
i )
� 1

σt
Ω �∇Ψ��σsΦ+Q

4πσt

�
dV

+
Z

D

σtΨ�w�
i dV = 0: (3.13)

Now, we use Green’s Theorem to transform the first term in equation (3.13) into a surface

integral:

�
Z

∂D

(n �Ω)
� 1

σt
Ω �∇Ψ�� σsΦ+Q

4πσt

�
w�

i dS+
Z

D

(Ω �∇w�
i )
� 1

σt
Ω �∇Ψ�� σsΦ+Q

4πσt

�
dV

+
Z

D

σtΨ�w�
i dV = 0: (3.14)

We insert the boundary condition:

Z

∂D

jn �Ωj(Ψ��F�)w�
i dS+

Z

D

(Ω �∇w�
i )

1
σt

(Ω �∇Ψ�)dV+
Z

D

σtΨ�w�
i dV

=
Z

D

(Ω �∇w�
i )
�σsΦ+Q

4πσt

�
dV; (3.15)

then expandΨ� andΦ in two set of linearly independent basis functions:

Ψ�(r ;Ω)' ψ�(r ;Ω) =
I

∑
j=1

ψ�
j (Ω)b�j (r); (3.16a)
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and

Φ(r) ' φ�(r) =
K

∑
l=1

φ�l d�l (r): (3.16b)

Hence, we obtain:

Z

∂D

jn �Ωj(ψ�� f�)w�
i dS+

Z

D

(Ω �∇w�
i )

1
σt

(Ω �∇ψ�)dV+
Z

D

σtψ�w�
i dV

=
Z

D

(Ω �∇w�
i )

σsφ�+q�

4πσt
dV for i = 1::I ; (3.17a)

and

Z

D

∇ �
�

2
Z

2π

Ωψ�dΩ
�

v�k dV+
Z

D

σtφ�v�k dV

=
Z

D

(σsφ�+q�)v�k dV for k= 1::K: (3.17b)

Thus, we have arrived at a system ofI linear equations for the unknowns (ψ�
i ;1� i � I )

coupled to a system ofK linear equations for the unknowns (φ�l ;1� l � K). While we

refer to this as the CFEM discretization of the odd-parity system, it is actually a mixed

finite element method. The reason we term this a CFEM approximation is that the odd-

parity angular flux is expanded in a continuous finite element basis.

2. Slab Geometry

Again, we present the slab geometry linear continuous finite element equations. In this

case, the odd-parity angular fluxes are expanded in the standard tent function basis, while



40

the scalar fluxes are piecewise constants in each cell:

w�
j+1=2 = b�j+1=2 =

8>>>>>><
>>>>>>:

(xj+3=2�x)=(xj+3=2�xj+1=2) for x2 (xj+1=2;xj+3=2)

(x�xj�1=2)=(xj+1=2�xj�1=2) for x2 (xj�1=2;xj+1=2)

0 otherwise;

v�j = d�j =

8>><
>>:

1 for x2 (xj�1=2;xj+1=2)

0 otherwise:

The equations governing the boundary cells are:

jµj(ψ�
1=2� f�l )�µ2

�ψ�
3=2�ψ�

1=2

σt1∆x1

�
+

σt1∆x1

3
ψ�

1=2+
σt1∆x1

6
ψ�

3=2

=�µ
2

�σs1φ�1 +q�1
σt1

�
for j = 1; (3.18a)

and

jµj(ψ�
J+1=2� f�r )+µ2

�ψ�
J+1=2�ψ�

J�1=2

σt1∆x1

�
+

σtJ∆xJ

6
ψ�

J�1=2+
σtJ∆xJ

3
ψ�

J+1=2

=
µ
2

�σsJφ�J +q�J
σtJ

�
for j = J: (3.18b)

For the interior cells, we have:

�µ2
�ψ�

j+3=2�ψ�
j+1=2

σt j+1∆xj+1
�

ψ�
j+1=2�ψ�

j�1=2

σt j∆xt j

�
+

σt j∆xj

6
ψ�

j�1=2+
�σt j∆xj

3
+

σt j+1∆xj+1

3

�
ψ�

j+1=2+
σt j+1∆xj+1

6
ψ�

j+3=2

=�µ
2

�σs j+1φ�j+1+q�j+1

σt j+1
�

σs jφ�j +q�j
σt j

�
for j = 2::J�1: (3.18c)
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Finally, using piecewise constant finite elements to evaluate equation (3.17b), we obtain

the following cell centered balance equation:

2

1Z

0

µ(ψ�
j+1=2�ψ�

j�1=2)dµ+σt j∆xjφ�j = ∆xj(σs jφ�j +q�j ) for j = 1::J: (3.18d)

Again, we can lump the mass terms. The boundary cells are then described by:

jµj(ψ�
1=2� f�l )�µ2

�ψ�
3=2�ψ�

1=2

σt1∆x1

�
+

σt1∆x1

2
ψ�

1=2

=�µ
2

�σs1φ�1 +q�1
σt1

�
for j = 1; (3.19a)

and

jµj(ψ�
J+1=2� f�r )+µ2

�ψ�
J+1=2�ψ�

J�1=2

σtJ∆xJ

�
+

σtJ∆xJ

2
ψ�

J+1=2

=
µ
2

�σsJφ�J +q�J
σtJ

�
for j = J: (3.19b)

In the interior, we obtain:

�µ2
�ψ�

j+3=2�ψ�
j+1=2

σt j+1∆xj+1
�

ψ�
j+1=2�ψ�

j�1=2

σt j∆xt j

�
+
�σt j∆xj +σt j+1∆xj+1

2

�
ψ�

j+1=2

=�µ
2

�σs j+1φ�j+1+q�j+1

σt j+1
�

σs jφ�j +q�j
σt j

�
for j = 2::J�1: (3.19c)

The cell centered balance equation remains unchanged:

2

1Z

0

µ(ψ�
j+1=2�ψ�

j�1=2)dµ+σt j∆xjφ�j = ∆xj(σs jφ�j +q�j ) for j = 1::J: (3.19d)

Both the lumped and unlumped odd-parity systems consist of symmetric tridiagonal matrix

problems for each angle coupled to a cell centered balance equation.
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C. Self Adjoint Angular Flux

We rewrite the SAAF system of equations here:

�Ω �∇ 1
σt

Ω �∇Ψ+σtΨ =
σsΦ+Q

4π
�Ω �∇

�σsΦ+Q
4πσt

�
; (3.20a)

Ω �∇Ψ+σtΨ =
σsΦ+Q

4π
; (3.20b)

and define the boundary condition forr 2 ∂D to be:

Ψb(r ;Ω) =

8>><
>>:

F(r ;Ω) for n �Ω < 0

Ψ(r ;Ω) for n �Ω > 0:

(3.20c)

As in the odd-parity system, we have a problem where the solutions naturally exist in

different finite element spaces.

1. XYZ Geometry

We begin by multiplying equation (3.20a) by a set of weight functions (wi(r);1� i � I )

and equation (3.20b) by a different set of weight functions (vk(r);1� k � K). We then

integrate over the problem domain and obtain equations of the form:

�
Z

D

Ω �∇
� 1

σt
Ω �∇Ψ� σsΦ+Q

4πσt

�
wi dV+

Z

D

σtΨwi dV

=
Z

D

σsΦ+Q
4π

wi dV; (3.21a)

and

Z

D

Ω �∇ΨvkdV+
Z

D

σtΨvk dV =
Z

D

σsΦ+Q
4π

vk dV; (3.21b)
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for each value ofi andk. We must manipulate equation (3.21a) so that we can apply the

boundary condition. First, we use identity (3.3) to get:

�
Z

D

∇ �
h
wiΩ

� 1
σt

Ω �∇Ψ� σsΦ+Q
4πσt

�i
dV+

Z

D

(Ω �∇wi)
� 1

σt
Ω �∇Ψ� σsΦ+Q

4πσt

�
dV

+
Z

D

σtΨwi dV =
Z

D

σsΦ+Q
4π

wi dV: (3.22)

Now we apply Green’s theorem to the first term in equation (3.22) to arrive at:

Z

∂D

(n �Ω)
�
� 1

σt
Ω �∇Ψ+

σsΦ+Q
4πσt

�
| {z }

Ψb

wi dS+
Z

D

(Ω �∇wi)
� 1

σt
Ω �∇Ψ� σsΦ+Q

4πσt

�
dV

+

Z

D

σtΨwi dV =

Z

D

σsΦ+Q
4π

wi dV: (3.23)

We recognize that the parenthetical term in the boundary integral of equation (3.23) is,

by equation (3.20b), the value of the angular flux on the boundary. This allows us to

incorporate equation (3.20c), naturally:

Z

∂D

(n �Ω)Ψbwi dS+
Z

D

(Ω �∇wi)
1
σt

Ω �∇ΨdV+
Z

D

σtΨwi dV

=
Z

D

σsΦ+Q
4π

wi dV+
Z

D

(Ω �∇wi)
σsΦ+Q

4πσt
dV: (3.24)

Up to this point, we have made no assumptions about the form of the analytic variables.

That is, we are free to chose the finite element bases that we judge to be most appealing.

With this in mind, we rewrite the weighted residual equations in the following form:

Z

∂D

(n �Ω)Ψbwi dS+
Z

D

(Ω �∇wi)
1
σt

Ω �∇ΨdV+
Z

D

σtΨwi dV

=
Z

D

σsΦ+Q
4π

wi dV+
Z

D

(Ω �∇wi)
σsΦ̃+ Q̃

4πσt
dV; (3.25a)
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Z

D

Ω �∇ΨvkdV+
Z

D

σtΨ̃vk dV =
Z

D

σsΦ̃+ Q̃
4π

vk dV: (3.25b)

Finally, we approximate the analytic unknowns with the following basis function expan-

sions:

Ψ(r ;Ω)' ψ(r ;Ω) =
I

∑
j=1

ψ j(Ω)bj(r); (3.26a)

Φ(r)' φ(r) =
I

∑
j=1

φ jbj(r) whereφ j =
Z

4π
ψ j(Ω)dΩ; (3.26b)

Ψ̃(r ;Ω)' ψ̃(r ;Ω) =
K

∑
l=1

ψ̃l(Ω)dl (r); (3.26c)

Φ̃(r) ' φ̃(r) =
K

∑
l=1

φ̃l dl (r) whereφ̃ j =

Z
4π

ψ̃ j(Ω)dΩ: (3.26d)

to obtain the SAAF CFEM system:

Z

∂D

(n �Ω)ψbwi dS+
Z

D

(Ω �∇wi)
1
σt

Ω �∇ψdV+
Z

D

σtψwi dV

=
Z

D

σsφ+q
4π

wi dV+
Z

D

(Ω �∇wi)
σsφ̃+ q̃

4πσt
dV for i = 1::I : (3.27a)

Z

D

Ω �∇ψvk dV+

Z

D

σtψ̃vk dV =

Z

D

σsφ̃+ q̃
4π

vk dV for k= 1::K: (3.27b)

ψb(r ;Ω) =

8>><
>>:

f (r ;Ω) for n �Ω < 0

ψ(r ;Ω) for n �Ω > 0

(3.27c)



45

Like the odd-parity system, this is a CFEM approximation only in the sense that the angular

flux, ψ, is described with a continuous finite element basis. Equations (3.27) are, in fact, a

mixed finite element system.

2. Slab Geometry

The LCFEM discretization of the SAAF system involves angular and scalar flux unknowns

from two different spaces. We expandψ andφ in the linear continuous basis, whilẽψ and

φ̃ are piecewise constants:

wj+1=2 = bj+1=2 =

8>>>>>><
>>>>>>:

(xj+3=2�x)=(xj+3=2�xj+1=2) for x2 (xj+1=2;xj+3=2)

(x�xj�1=2)=(xj+1=2�xj�1=2) for x2 (xj�1=2;xj+1=2)

0 otherwise;

vj = dj =

8>><
>>:

1 for x2 (xj�1=2;xj+1=2)

0 otherwise:

For the boundary cells we obtain:

�µψl �µ2
�ψ3=2�ψ1=2

σt1∆x1

�
+

σt1∆x1

3
ψ1=2+

σt1∆x1

6
ψ3=2

=
σs1∆x1

6
φ1=2+

σs1∆x1

12
φ3=2

+
∆x1

6
q1=2+

∆x1

12
q3=2�

µ
2

�σs1φ̃1+ q̃1

σt1

�
for j = 1; (3.28a)
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and

µψr +µ2
�ψJ+1=2�ψJ�1=2

σtJ∆xJ

�
+

σtJ∆xJ

6
ψJ�1=2+

σtJ∆xJ

3
ψJ+1=2

=
σsJ∆xJ

6
φJ+1=2+

σsJ∆xJ

12
φJ�3=2

+
∆xJ

6
qJ+1=2+

∆xJ

12
qJ�3=2+

µ
2

�σsJφ̃J + q̃J

σtJ

�
for j = J; (3.28b)

where the boundary fluxes,ψl andψr are given by:

ψl =

8>><
>>:

fl for µ> 0

ψ1=2 for µ< 0;

ψr =

8>><
>>:

ψJ+1=2 for µ> 0

fr for µ< 0:

(3.28c)

In the interior, we have:

�µ2
�ψ j+3=2�ψ j+1=2

σt j+1∆xj+1
� ψ j+1=2�ψ j�1=2

σt j∆xt j

�
+

σt j∆xj

6
ψ j�1=2+

�σt j∆xj

3
+

σt j+1∆xj+1

3

�
ψ j+1=2+

σt j+1∆xj+1

6
ψ j+3=2

=
σs j∆xj

12
φ j�1=2+

�σs j∆xj

6
+

σs j+1∆xj+1

6

�
φ j+1=2+

σs j+1∆xj+1

12
φ j+3=2

+
∆xj

12
qj�1=2+

�∆xj

6
+

∆xj+1

6

�
qj+1=2+

∆xj+1

12
qj+3=2

� µ
2

�σs j+1φ̃ j+1+ q̃j+1

σt j+1
� σs jφ̃ j + q̃j

σt j

�
for j = 2::J�1: (3.28d)

Finally, equation (3.27b) is evaluated with piecewise constant finite elements to arrive at

the SAAF cell centered balance equation:

µ(ψ j+1=2�ψ j�1=2)+σt j∆xjψ̃ j = ∆xj

�σs jφ̃ j + q̃j

2

�
for j = 1::J: (3.28e)
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With mass matrix lumping, we arrive at the following equations for the boundary cells:

�µψl �µ2
�ψ3=2�ψ1=2

σt1∆x1

�
+

σt1∆x1

2
ψ1=2

=
σs1∆x1

4
φ1=2+

∆x1

4
q1=2�

µ
2

�σs1φ̃1+ q̃1

σt1

�
for j = 1; (3.29a)

and

µψr +µ2
�ψJ+1=2�ψJ�1=2

σtJ∆xJ

�
+

σtJ∆xJ

2
ψJ+1=2

=
σsJ∆xJ

4
φJ+1=2+

∆xJ

4
qJ+1=2+

µ
2

�σsJφ̃J+ q̃J

σtJ

�
for j = J: (3.29b)

In the interior, we have:

�µ2
�ψ j+3=2�ψ j+1=2

σt j+1∆xj+1
� ψ j+1=2�ψ j�1=2

σt j∆xt j

�
+
�σt j∆xj +σt j+1∆xj+1

2

�
ψ j+1=2

=
�σs j∆xj +σs j+1∆xj+1

4

�
φ j+1=2+

�∆xj +∆xj+1

4

�
qj+1=2

� µ
2

�σs j+1φ̃ j+1+ q̃j+1

σt j+1
� σs jφ̃ j + q̃j

σt j

�
for j = 2::J�1: (3.29c)

The cell centered balance equation remains the same:

µ(ψ j+1=2�ψ j�1=2)+σt j∆xjψ̃ j = ∆xj

�σs jφ̃ j + q̃j

2

�
for j = 1::J: (3.29d)

As in the odd-parity case, the slab geometry SAAF system consists of a symmetric tridiag-

onal matrix problem for each angle coupled to a cell centered balance equation.

At this point, some additional discussion regarding the external fixed source is neces-

sary. We noted above that the inscattering source should exist in the same finite element

space as the within-group scattering source. In the case of the SAAF systems, we have

two separate within-group scattering sources, so it is necessary to have two separate fixed

sources so that the inscattering sources from both finite element spaces can be properly

accounted for. The external fixed source, however, need only be defined for one space. The



48

value for the other space can be obtained by simply taking the appropriate average of the

source already defined. We define the external fixed source for the cell centered unknowns.

Finally, we observe that for both the parity and SAAF slab geometry systems the mass

matrix lumped LCFEM approximation is identical to the edge centered finite difference

approximation.

D. Relationship Between the Parity Equations and the SAAF Equation

Morel and McGhee [4] have shown that solving theP1 SAAF equations is equivalent to

solving both the even- and odd-parityP1 equations that are independent in the problem

interior, but coupled on the boundaries. In fact, a more general relationship can be devel-

oped. Consider the CFEM discretizations of the even- and odd-parity equations shown in

equations (3.8) and (3.17). If we setw+
i =w�

i =wi andv�k = vk, then, since these are linear

systems, we can simply add them to obtain:

Z

∂D

jn �Ωj
�

ψ� f+� f�
�

wi dS+
Z

D

(Ω �∇wi)
1
σt

Ω �∇ψ;dV+
Z

D

σtψwi dV

=
Z

D

σsφ++q+

4π
wi dV+

Z

D

(Ω �∇wi)
σsφ�+q�

4πσt
dV for i = 1::I ; (3.30a)

and

Z

D

∇ �
�

2
Z

2π

Ωψ�dΩ
�

vk dV+
Z

D

σtφ�vk dV

=

Z

D

(σsφ�+q�)vk dV for k= 1::K: (3.30b)

Equations (3.30) are nearly identical to the SAAF CFEM system shown in equations (3.27).

There is, however, one important difference. Using the definition off+=�, we see that the



49

sum of the even- and odd- parity equations satisfies the following boundary condition:

jn �Ωj
�

ψ� f+� f�
�
=

8>><
>>:
(n �Ω)(2 f �ψ) for n �Ω < 0

(n �Ω)ψ for n �Ω > 0;

(3.31)

while the SAAF systems satisfies:

(n �Ω)ψb =

8>><
>>:
(n �Ω) f for n �Ω < 0

(n �Ω)ψ for n �Ω > 0:

(3.32)

Thus, the only difference in the finite element formulations is in the boundary term.

If we were to substitute the boundary condition(n �Ω)(2 f �ψ) in place of(n �Ω) f in the

SAAF system, we would expect to obtain results identical to the average of the even- and

odd-parity solutions. If we redefine the SAAF boundary condition, equation (3.27c), as:

ψb(r ;Ω) =

8>><
>>:

θ f (r ;Ω)+(1�θ)ψ(r ;Ω) for n �Ω < 0

ψ(r ;Ω) for n �Ω > 0

(3.33)

we obtain standard SAAF boundary condition withθ = 1 and a boundary condition that

yields solutions identical to the even- and odd-parity CFEM solutions withθ = 2.

E. Discrete Diffusion Limit Analysis

We now commence with a thick diffusion limit analysis of the CFEM discretization we

have developed. We note that Adams has previously published analyses for the even- and

odd-parity systems [1, 2]. We review those results, then proceed to an analysis of the SAAF

system. Our procedure is to introduce the diffusion limit scaling discussed in Chapter II

into each discretization then require the resulting equations to hold for like powers of the

scaling parameterε.
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1. Even-Parity

We begin by applying the diffusion limit scaling, equation (2.32), to the even-parity CFEM

system, equation (3.8). This results in the scaled even-parity CFEM equation:

Z

∂D

jn �Ωj(ψ+� f+)w+
i dS+

Z

D

(Ω �∇w+
i )

ε
σt

(Ω �∇ψ+)dV+
Z

D

σt

ε
ψ+w+

i dV

=
Z

D

(σt
ε � εσa)φ++ εq+

4π
w+

i dV: (3.34)

We introduce the ansatz:

ψ+ = ψ+[0]+ εψ+[1]+ ε2ψ+[2]+ :::; (3.35a)

φ+ = φ+[0]+ εφ+[1]+ ε2φ+[2]+ ::: whereφ+[k] =
Z

4π

ψ+[k] dΩ; (3.35b)

into equation (3.34) and group terms of like order. The O(1=ε) equation:

Z

D

σtψ+[0]w+
i dV =

Z

D

σtφ+[0]

4π
w+

i dV; (3.36)

shows that the leading order even-parity angular flux is isotropic if the mass matrix is

invertible (which we would expect for any CFEM):

ψ+[0] =
φ+[0]

4π
: (3.37)

The O(1) equation,

Z

∂D

jn �Ωj(ψ+[0]� f+)w+
i dS+

Z

D

σtψ+[1]w+
i dV =

Z

D

σtφ+[1]

4π
w+

i dV; (3.38)
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can be integrated over angle (after substitutingψ+[0] = φ+[0]=4π) to obtain an expression

for the leading order scalar flux on the boundary:

Z

∂D

φ+[0]w+
i dS=

Z

∂D

�
2

Z

n�Ω<0

2jn �Ωj f+ dΩ
�

w+
i dS: (3.39)

Finally, we write the O(ε) equation:

Z

∂D

jn �Ωjψ+[1]w+
i dS+

Z

D

(Ω �∇w+
i )

1
σt

(Ω �∇ψ+[0])dV+
Z

D

σtψ+[2]w+
i dV

=
Z

D

σtφ+[2]�σaφ+[0]+q+

4π
w+

i dV: (3.40)

After integrating this over angle, we obtain:

Z

∂D

�Z
4π

jn �Ωjψ+[1] dΩ
�

w+
i dS+

Z

D

1
3σt

(∇w+
i ) � (∇φ+[0])dV+

Z

D

σaφ+[0]w+
i dV

=
Z

D

q+w+
i dV; (3.41)

where we have noted that

Z

4π

ΩΩdΩ =
4π
3

I whereI is the identity tensor:

Clearly, the appropriate system that specifies the leading order even-parity scalar flux is the

CFEM approximation to the diffusion equation:

Z

D

1
3σt

(∇w+
i ) � (∇φ+[0])dV+

Z

D

σaφ+[0]w+
i dV =

Z

D

q+w+
i dV: (3.42a)

subject to a Marshak boundary condition:

Z

∂D

φ+[0]w+
i dS=

Z

∂D

�
2

Z

n�Ω<0

2jn �Ωj f+ dΩ
�

w+
i dS=

Z

∂D

φ+
b w+

i dS: (3.42b)
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Fig. 5. Ratio of the even-parity boundary weighting function toµ+ 3
2µ2.

Note that this is an essential boundary condition, whereas the even-parity transport equation

is subject to a natural boundary condition.

Whether this is an accurate discretization of the diffusion equation depends on both the

accuracy of the underlying diffusion discretization and on how well the Marshak boundary

condition approximates the exact boundary condition. While the accuracy of the CFEM

diffusion approximation depends on the spatial grid and choice of weight and basis func-

tions, it is well understood. We do not pursue this issue further, and simply assume that

the weight and basis functions have been selected so that equations (3.42) yield an accurate

solution of the diffusion equation.

The remaining question is whether or not equation (3.42b) is an accurate representa-

tion of the exact boundary condition, equation (2.39b). In general, it is not. We plot the

ratio of even-parity boundary weighting function to the polynomial approximation of the
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exact boundary weighting function,

2jn �Ωj
jn �Ωj+ 3

2jn �Ωj2
! 2

1+ 3
2jn �Ωj

;

in Fig. 5. For a thick diffusive problem driven by a grazing incoming angular flux (jn �Ωj
very small) we would expect the leading order even-parity solution to be higher than the

correct solution by a factor of approximately two.

2. Odd-Parity

Now we apply the diffusion limit scaling, equation (2.32), to the odd-parity CFEM system,

equations (3.17). This results in the scaled odd-parity CFEM system:

Z

∂D

jn �Ωj(ψ�� f�)w�
i dS+

Z

D

(Ω �∇w�
i )

ε
σt

(Ω �∇ψ�)dV+

Z

D

σt

ε
ψ�w�

i dV

=
Z

D

(Ω �∇w�
i )

(σt � ε2σa)φ�+ ε2q�

4πσt
dV; (3.43a)

Z

D

∇ �
�

2
Z

2π

Ωψ�dΩ
�

v�k dV+
Z

D

σt

ε
φ�v�k dV

=
Z

D

h
(
σt

ε
� εσa)φ�+ εq�

i
v�k dV: (3.43b)

We substitute the following ansatz:

ψ� = ψ�[0]+ εψ�[1]+ ε2ψ�[2]+ :::; (3.44a)

φ� = φ�[0]+ εφ�[1]+ ε2φ�[2]+ :::; (3.44b)
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into the scaled equations then require that the resulting systems hold for each power ofε.

The O(1=ε) term in equation (3.43a) is:

Z

D

σt

ε
ψ�[0]w�

i dV = 0: (3.45)

This implies (assuming that the mass matrix is invertible) that

ψ�[0] = 0: (3.46)

The O(1) part of equation (3.43a),

Z

∂D

jn �Ωj(ψ�[0]� f�)w�
i dS+

Z

D

σtψ�[1]w�
i dV =

Z

D

(Ω �∇w�
i )

σtφ�[0]

4πσt
dV; (3.47)

can be multiplied byΩ and integrated over angle to obtain:

1
3

Z

∂D

n �
�

2
Z

n�Ω<0

3ΩΩ f�dΩ
�

w�
i dS� 1

3

Z

D

φ�[0]∇w�
i dV

+
Z

D

σt

�
2
Z

2π

Ωψ�[1] dΩ
�

w�
i dV = 0; (3.48)

where we have noted that:

Z

4π

3Ωjn �Ωj f�dΩ =�n �
�

2
Z

n�Ω<0

3ΩΩ f� dΩ
�
:

Now, we turn our attention to equation (3.43b). The O(ε) equation is:

Z

D

∇ �
�

2
Z

2π

Ωψ�[1] dΩ
�

v�k dV+
Z

D

σaφ�[0]v�k dV =
Z

D

q�v�k dV: (3.49)
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Hence, we find that in the thick diffusive limit, the leading order odd-parity solution satis-

fies the following coupled systems of equations:

1
3

Z

∂D

n �
�

2
Z

n�Ω<0

3ΩΩ f�dΩ
�

w�
i dS� 1

3

Z

D

φ�[0]∇w�
i dV

+
Z

D

σt

�
2
Z

2π

Ωψ�[1] dΩ
�

w�
i dV = 0; (3.50a)

Z

D

∇ �
�

2
Z

2π

Ωψ�[1] dΩ
�

v�k dV+
Z

D

σaφ�[0]v�k dV =
Z

D

q�v�k dV: (3.50b)

If f� is symmetric about the outward normal, then:

n �
�

2
Z

n�Ω<0

3ΩΩ f�dΩ
�
= n

�
2

Z

n�Ω<0

3jn �Ωj2 f�dΩ
�
= nφ�b : (3.50c)

Equations (3.50) constitute adual mixed variationalfinite element discretization of the

diffusion equation. We can easily obtain a single diffusion equation if we mass lump (3.50a)

and apply Green’s theorem to (3.50b). The resulting system is interesting in that the scalar

flux in a particular cell is coupled to the scalar fluxes in every other cell that shares a

common vertex with the cell in question. We note that, even with the assumption of an

azimuthally symmetric incoming angular flux, equation (3.50c) is not, in general, a good

approximation to equation (2.39b). The ratio between the odd-parity boundary weighting

function and the polynomial approximation to the exact boundary weighting function,

3jn �Ωj2
jn �Ωj+ 3

2jn �Ωj2
! 3jn �Ωj

1+ 3
2jn �Ωj

;

is shown in Fig. 6. In this case, for a thick diffusive problem driven by a grazing incoming

angular flux, we would expect the odd-parity solution to be significantly lower than the

correct solution.
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Fig. 6. Ratio of the odd-parity boundary weighting function toµ+ 3
2µ2.

3. A Hybrid-Parity Method

If we examine the leading-order even- and odd-parity boundary conditions in the diffusion

limit, it is obvious that their average would be a very good approximation to the exact

boundary condition (at least if the incoming angular flux is azimuthally symmetric). That

is:

φ+
b +φ�b

2
= 2

Z

n�Ω<0

�
jn �Ωj+ 3

2
jn �Ωj2

�
f (r ;Ω)dΩ

' 2
Z

n�Ω<0

W(jn �Ωj) f (r ;Ω)dΩ: (3.51)

Therefore, if we select appropriate weight functions, basis functions and a spatial grid for

a specific diffusion problem, then the average of the even- and odd-parity solutions should

be accurate for thick diffusive transport problems. We test this prediction in Chapter VI. A

similar result has been observed for certain reactor physics problems [31].
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4. SAAF

We now apply the diffusion limit scaling to the SAAF system with the standard boundary

condition (θ = 1). If we were to setθ = 2 then we would expect to obtain the even- and

odd-parity results. That is,φ would satisfy a Marshak boundary condition andφ̃ a 3µ2

boundary condition in the thick diffusion limit. The scaled equations are:

Z

∂D

(n �Ω)ψbwi dS+
Z

D

(Ω �∇wi)
ε
σt

Ω �∇ψdV+
Z

D

σt

ε
ψwi dV

=
Z

D

(σt
ε � εσa)φ+ εq

4π
wi dV+

Z

D

(Ω �∇wi)
(σt � ε2σa)φ̃+ ε2q̃

4πσt
dV; (3.52a)

Z

D

Ω �∇ψvk dV+
Z

D

σt

ε
ψ̃vk dV =

Z

D

(σt
ε � εσa)φ̃+ εq̃

4π
vk dV; (3.52b)

ψb(r ;Ω) =

8>><
>>:

f (r ;Ω) for n �Ω < 0

ψ(r ;Ω) for n �Ω > 0:

(3.52c)

We introduce the following ansatz:

ψ = ψ[0]+ εψ[1]+ ε2ψ[2]+ :::; (3.53a)

φ = φ[0]+ εφ[1]+ ε2φ[2]+ ::: whereφ[k] =

Z

4π

ψ[k] dΩ; (3.53b)

ψ̃ = ψ̃[0]+ εψ̃[1]+ ε2ψ̃[2]+ :::; (3.53c)

φ̃ = φ̃[0]+ εφ̃[1]+ ε2φ̃[2]+ ::: whereφ̃[k] =

Z

4π

ψ̃[k] dΩ; (3.53d)
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into the scaled equations. The O(1=ε) portions of equations (3.52a) and (3.52b) are, re-

spectively:

Z

D

σtψ[0]wi dV =
Z

D

σtφ[0]

4π
wi dV; (3.54a)

and

Z

D

σtψ̃[0]vk dV =
Z

D

σt φ̃[0]

4π
vk dV: (3.54b)

These equations imply, under the assumption of invertible mass matrices, that the leading

order angular fluxes are isotropic:

ψ[0] =
φ[0]

4π
; (3.55a)

and

ψ̃[0] =
φ̃[0]

4π
: (3.55b)

Now we consider the O(1) terms of equation (3.52a):

Z

∂D

(n �Ω)ψbwi dS+
Z

D

σtψ[1]wi dV =
Z

D

σtφ[1]

4π
wi dV+

Z

D

(Ω �∇wi)
σt φ̃[0]

4πσt
dV: (3.56)

Integrating over angle, we arrive at:

Z

∂D

�Z
4π

(n �Ω)ψb dΩ
�

wi dS= 0: (3.57)

If we have continuous weight and basis functions, and apply lumping on the surface terms

so that the surface coefficient matrix is invertible, we have:

Z

4π

(n �Ω)ψb dΩ =

Z

n�Ω<0

(n �Ω) f dΩ+

Z

n�Ω>0

(n �Ω)ψ[0] dΩ = 0 for r 2 ∂D:
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We have already shown that the leading order angular flux is isotropic throughout the entire

problem, thus:

Z

n�Ω<0

(n �Ω) f dΩ+
Z

n�Ω>0

(n �Ω)
φ[0]

4π
dΩ = 0 for r 2 ∂D:

We move the leading order scalar flux outside the integral to obtain:

φ[0]
i =

4π
R

n�Ω<0
jn �Ωj f dΩ

R
n�Ω>0

(n �Ω)dΩ
for r 2 ∂D:

Evaluating the integrals, we find that:

φ[0]
i (r) = 2

Z

n�Ω<0

2jn �Ωj f dΩ for r 2 ∂D: (3.58)

Thus, to leading order,φ[0] satisfies a Marshak boundary condition. Let us take the first

angular moment of equation (3.52a) to obtain:

Z

∂D

�Z
4π

(n �Ω)ΩψbdΩ
�

wi dS+
Z

D

�Z
4π

σtΩψ[1] dΩ
�

wi dV =
1
3

Z

D

φ̃[0]∇wi dV: (3.59)

We now work on the boundary term. We again make use of equation (3.52c) to split this

integral into two parts:

Z

4π

(n �Ω)ΩψbdΩ =
Z

n�Ω<0

(n �Ω)Ω f dΩ+
Z

n�Ω>0

(n �Ω)Ωψ[0] dΩ:

However, we have already determined that the magnitude ofφ[0] on the boundary is equal

to the Marshak weighting of the known incident angular flux. Since we also know that the
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leading order scalar flux on the boundary is isotropic we can write:

Z

n�Ω>0

(n �Ω)Ωψ[0] dΩ =
�1

π

Z

n�Ω<0

jn �Ωj f dΩ
�� Z

n�Ω>0

(n �Ω)ΩdΩ
�

=
�1

π

Z

n�Ω<0

jn �Ωj f dΩ
��

n
2π
3

�

=
2n
3

Z

n�Ω<0

jn �Ωj f dΩ:

Therefore, the boundary term in equation (3.59) becomes:

1
3

Z

∂D

�
2n

Z

n�Ω<0

jn �Ωj f dΩ+n �
Z

n�Ω<0

3ΩΩ f dΩ
�

wi dS

The O(ε) coefficients from equation (3.52b) give:

Z

D

Ω �∇ψ[1]vk dV+

Z

D

σtψ̃[2]vk dV =

Z

D

σt φ̃[2]�σaφ̃[0]+ q̃
4π

vk dV: (3.60)

We integrate this over angle find that the leading order SAAF solution satisfies the follow-

ing coupled diffusion system:

1
3

Z

∂D

�
2n

Z

n�Ω<0

jn �Ωj f dΩ+n �
Z

n�Ω<0

3ΩΩ f dΩ
�

wi dS

� 1
3

Z

D

φ̃[0]∇wi dV+
Z

D

σt

�Z
4π

Ωψ[1] dΩ
�

wi dV = 0: (3.61a)

Z

D

∇ �
�Z

4π

Ωψ[1] dΩ
�

vk dV+
Z

D

σaφ̃[0]vk dV =
Z

D

q̃vk dV: (3.61b)
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If the incoming angular flux is azimuthally symmetric, we can simplify the first term in the

boundary integral:

1
3

Z

∂D

n
�

2
Z

n�Ω<0

(jn �Ωj+ 3
2
jn �Ωj2) f dΩ

�
wi dS

� 1
3

Z

D

φ̃[0]∇wi dV+
Z

D

σt

�Z
4π

Ωψ[1] dΩ
�

wi dV = 0: (3.62a)

Z

D

∇ �
�Z

4π

Ωψ[1] dΩ
�

vk dV+
Z

D

σaφ̃[0]vk dV =
Z

D

q̃vk dV: (3.62b)

Equations (3.62) are a dual mixed variational finite element approximation to the diffusion

equation. We can very simply obtain a single diffusion equation if we mass lump (3.62a)

and apply Green’s theorem to (3.62b). Thus, the coupling between cells is identical to the

odd-parity system, equations (3.50). With the assumption of an azimuthally symmetric

incoming angular flux, the SAAF boundary condition forφ̃ should be an excellent approx-

imation to equation (2.39b).

F. Internal Interface Analysis

In the previous section, we analyzed problems that were entirely diffusive. In this section,

we consider problems with adjacent diffusive and non-diffusive regions. Adams [1] has

analyzed the even-parity CFEM system for problems like this in general 3D geometry with

unspecified weight and basis functions. However, there is an minor error in that analysis

that invalidates a portion of the results.

In this section, we restrict our analysis to the case of lumped linear continuous fi-

nite element discretizations in slab geometry. Fortunately, a great deal of insight can be

gained through such analyses because many of the important features of this problem are

predominately one-dimensional.



62

xj+1/2

∆xj ∆xj+1

xj+3/2xj-1/20 = x1/2 x3/2 xJ+1/2 = LxJ-1/2

σt /ε, εσa, εQσt, σa, Q

nTnD

Fig. 7. Slab geometry spatial mesh with an internal interface.

Consider the spatial mesh shown in Fig. 7. The problem we consider consists of a

transportregion to the left ofxj+1=2 and athick diffusiveregion to the right ofxj+1=2. The

unscaled transport equation holds in cells 1 toj (of course, it also holds throughout the

entire problem). The diffusion limit results from the previous sections hold for the cells

right of, but not includingj +1. Thus, our task is to find the leading order solution to the

discretized transport equation in the two cells immediately adjacent to the interface, that is

cells j and j +1. The outward normalnT points out of the transport region and into the

diffusive region, whilenD points out of the diffusive region and into the transport region.

First, we determine the magnitude of the scalar flux on the boundary assuming the

angular flux incident on the diffusive region from the transport region is known. We then

find the angular flux that exits from the diffusive region back into the transport region.

1. Even-Parity

The scaled equation that governs the solution at the interface is:

�µ2
�

ε
ψ+

j+3=2�ψ+
j+1=2

σt j+1∆xj+1
�

ψ+
j+1=2�ψ+

j�1=2

σt j∆xj

�
+
�σt j∆xj

2
+

σt j+1∆xj+1

2ε

�
ψ+

j+1=2 =
1
4

h
σs j∆xj +(

σt j+1

ε
� εσa j+1)∆xj+1

i
φ+

j+1=2

+
�∆xj

4
+

ε∆xj+1

4

�
q+j+1=2: (3.63)
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The O(1=ε) equation shows that the leading order even-parity angular flux is isotropic on

the boundary between the diffusive and transport regions:

ψ+[0]
j+1=2 =

1
2

φ+[0]
j+1=2: (3.64)

The O(1) terms are:

µ2
�ψ+[0]

j+1=2�ψ+[0]
j�1=2

σt j∆xj

�
+

σt j∆xj

2
ψ+[0]

j+1=2+
σt j+1∆xj+1

2
ψ+[1]

j+1=2

=
σs j∆xj

4
φ+[0]

j+1=2+
σt j+1∆xj+1

4
φ+[1]

j+1=2+
∆xj

4
q+j+1=2: (3.65)

The zeroth moment of equation (3.65) produces:

1Z

�1

µ2

σt j

�ψ+[0]
j+1=2�ψ+[0]

j�1=2

∆xj

�
dµ+

σa j∆xj

2
φ+[0]

j+1=2 =
∆xj

2
q+j+1=2: (3.66)

The first term in even in angle, so we can write:

1Z

0

2
µ2

σt j

�ψ+[0]
j+1=2�ψ+[0]

j�1=2

∆xj

�
dµ+

σa j∆xj

2
φ+[0]

j+1=2 =
∆xj

2
q+j+1=2: (3.67)

We now add and subtractµψ+[0]
j+1=2 to obtain:

�
1Z

0

2µ
�

ψ+[0]
j+1=2�

µ
σt j

ψ+[0]
j+1=2�ψ+[0]

j�1=2

∆xj

�
dµ+2

1Z

0

µψ+[0]
j+1=2dµ+

σa j∆xj

2
φ+[0]

j+1=2

=
∆xj

2
q+j+1=2: (3.68)

Thus, we find that:

φ+[0]
j+1=2 =

1R
0

2µ
�

ψ+[0]
j+1=2�

µ
σt j

ψ+[0]
j+1=2�ψ+[0]

j�1=2
∆xj

�
dµ+∆xjq

+
j+1=2

1+σa j∆xj
(3.69)
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However, if we assume that the transport region is finely zoned (∆xj ! 0), then,

ψ+[0]
j+1=2�ψ+[0]

j�1=2

∆xj
! dψ+[0]

dx

�����
j

: (3.70)

We then identify,

ψe[0]
j+1=2 = ψ+[0]

j+1=2�
µ

σt j

dψ+[0]

dx

�����
j

as the even-parity approximation to the full range angular flux. Thus:

φ+[0]
j+1=2 = 2

1Z

0

2µψe[0]
j+1=2dµ: (3.71)

That is, the magnitude of the scalar flux on the interface is simply a Marshak weighting of

ψe[0]
j+1=2, the even-parity approximation to the full range angular flux on the interface.

Now, we must consider the problem of determining what returns from the diffusive

region back into the transport region. Recall that in Chapter II, we showed that the exact

solution satisfies the complicated albedo shown in equation (2.42). Our goal here is to find

the corresponding albedo for the even-parity system.

It is straightforward to show that at a boundary forµ< 0:

ψe(xb;µ) = 2ψ+(xb;µ)� f (xb;�µ);

where f (xb;�µ) is the angular flux incident upon that boundary. We have just shown that

the even-parity angular flux on the interface between the diffusive and transport region is
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isotropic. Using equation (3.71), we find that forµ< 0:

ψe[0]
j+1=2(µ) = 2ψ+[0]

j+1=2(µ)� f (�µ) (3.72a)

= φ+[0]
j+1=2�ψe[0]

j+1=2(�µ)

= 2

1Z

0

2µ0ψe[0]
j+1=2(µ

0)dµ0�ψe[0]
j+1=2(�µ)

=

1Z

0

αe(µ;µ0)ψe[0]
xj+1=2

(µ0)dµ0

where we have defined the albedo,αe(µ;µ0), as:

αe(µ;µ0) = 4µ0�δ(µ0+µ): (3.72b)

We have also identifiedf (�µ) asψe[0]
j+1=2(�µ), which is appropriate for the albedo problem

we are considering. To summarize, we can now say that the leading order transport solution

in a problem with an internal interface satisfies:

� the discrete even-parity transport equation for all the cells from the left boundary to

the interface, subject to the albedo boundary condition shown in equation (3.72), and

� the discrete diffusion limit even-parity system for all the cells from the interface to

the right boundary, subject to equation (3.71).

2. Odd-Parity

At the interface, the scaled odd-parity lumped linear finite element equations are:

�µ2
�

ε
ψ�

j+3=2�ψ�
j+1=2

σt j+1∆xj+1
�

ψ�
j+1=2�ψ�

j�1=2

σt j∆xt j

�
+
�σt j∆xj

2
+

σt j+1∆xj+1

2ε

�
ψ�

j+1=2

=�µ
2

�(σt j+1� ε2σa j+1)φ�j+1+ ε2q�j+1

σt j+1
�

σs jφ
�]
j +q�j
σt j

�
; (3.73a)
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2

1Z

0

µ(ψ�
j+1=2�ψ�

j�1=2)dµ+σa j∆xjφ�j = ∆xjq
�
j ; (3.73b)

2

1Z

0

µ(ψ�
j+3=2�ψ�

j+1=2)dµ+ εσa j+1∆xj+1φ�j+1 = ε∆xj+1q�j+1: (3.73c)

The O(1=ε) equation shows that the leading order odd-parity angular flux is zero:

ψ�[0]
j+1=2 = 0: (3.74)

The O(1) terms of equation (3.73a) are:

µ2
�ψ�[0]

j+1=2�ψ�[0]
j�1=2

σt j∆xt j

�
+

σt j+1∆xj+1

2
ψ�[1]

j+1=2 =�µ
2

�
φ�[0]

j+1�
σs jφ

�[0]
j +q�j
σt j

�
; (3.75)

where we have used the O(1=ε) result. We solve forψ�[1]
j+1=2 and take theµ moment to find:

σt j+1∆xj+1

2

1Z

�1

µψ�[1]
j+1=2dµ

=�1
3

φ�[0]
j+1 +

1Z

0

2µ2
�
�µ

ψ�[0]
j+1=2�ψ�[0]

j�1=2

σt j∆xt j
+

σs jφ
�[0]
j +q�j
σt j

�
dµ: (3.76)

If we again assume that the transport region is finely zoned (∆xj ! 0), then,

ψ�[0]
j+1=2�ψ�[0]

j�1=2

∆xj
! dψ�[0]

dx

�����
j

; (3.77)

and we have, by definition:

ψo[0]
j+1=2 = ψ�[0]

j+1=2�
µ

σt j

dψ�[0]

dx

�����
j

+
σs jφ

�[0]
j +q�j
σt j

:
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Here,ψo the odd-parity approximation to the full range angular flux. Since the leading

order odd-parity angular flux is zero, we have:

1Z

�1

µψ�[1]
j+1=2dµ=�1

3

φ�[0]
j+1�2

1R
0

3µ2ψo[0]
j+1=2dµ

(σt j+1∆xj+1=2)
: (3.78)

Finally, we take the zeroth moment of the O(1) terms in equation (3.73c) to obtain:

� 1
3

h φ�[0]
j+2�φ�[0]

j+1

(σt j+2∆xj+2+σt j+1∆xj+1)=2
�

φ�[0]
j+1 �φ�[0]

j+1=2

(σt j+1∆xj+1=2)

i
+σa j+1∆xj+1φ�[0]

j+1

= ∆xj+1q�j+1; (3.79a)

where,

φ�[0]
j+1=2 = 2

1Z

0

3µ2ψo[0]
j+1=2dµ: (3.79b)

We have used the interior analysis results to evaluate theµ moment ofψ�[1]
j+3=2. Thus, the

magnitude of the leading order scalar flux in the first diffusive cell is the 3µ2 moment of

the odd-parity approximation to the incident flux from the transport region.

Now, we must find the angular flux that returns from the diffusive region back into the

transport region. At a boundary forµ< 0 we can write:

ψo(xb;µ) = 2ψ�(xb;µ)+ f (xb;�µ);

The leading order odd-parity angular flux on the interface between the diffusive and trans-
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port region is zero, thus forµ< 0:

ψo[0]
j+1=2(µ) = f (�µ) (3.80a)

= ψo[0]
j+1=2(�µ)

=

1Z

0

αo(µ;µ0)ψo[0]
xj+1=2

(µ0)dµ0

where we have defined the albedo,αo(µ;µ0), as:

αo(µ;µ0) = δ(µ0+µ): (3.80b)

� the discrete odd-parity transport system for all the cells from the left boundary to the

interface, subject to albedo boundary condition shown in equation (3.80), and

� the discrete diffusion limit odd-parity system for all the cells from the interface to the

right boundary, subject to equation (3.79b).

3. Hybrid-Parity

Just as in an entirely diffusive problem, it appears that the average the even- and odd-parity

solutions would lead to the correct weighted boundary condition for the diffusive portion

of the problem. Specifically,

φ�[0]
j+1=2+φ+[0]

j+1=2

2
= 2

� 1Z

0

µψe[0]
j+1=2dµ+

1Z

0

3
2

µ2ψo[0]
j+1=2dµ

�
:

If the transport region is zoned finely enough to resolve the solution in both the even- and

odd-parity cases,

ψe[0]
j+1=2(µ) ' ψo[0]

j+1=2(µ)' ψ[0]
j+1=2(µ) (3.81)
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then we have,

φ�[0]
j+1=2+φ+[0]

j+1=2

2
= 2

1Z

0

(µ+
3
2

µ2)ψ[0]
j+1=2 dµ: (3.82)

This is a desirable, though not unexpected, result. Again, we see that the average of the

parity scalar fluxes should be very accurate for diffusive portions of the problem, assuming

that the transport portions are zoned finely enough so that equation (3.81) holds.

A more difficult question to answer is whether or not the average of the even- and

odd-parity solutions results in the correct angular flux returning into the transport region.

Let us consider the average of the parity albedo conditions. We have:

αe(µ;µ0)+αo(µ;µ0)
2

=
1
2

h
4µ0�δ(µ0+µ)+δ(µ0+µ)

i
= 2µ0: (3.83)

This is an interesting result for two reasons. First, we see that this albedo is not a function

of returning angle. The particles returning back into the transport region are isotropically

distributed in angle. Second, particles are conserved by theµ0 weighting of the incoming

angular flux.

The exact albedo boundary, however, not only conserves particles but also returns

particles back into the transport region anisotropically. In Figure 8 we plot the exact albedo

and the hybrid- parity albedo for various values ofµ0 as a function of the returning angle.

We see from the figure that the largest discrepancies occur for small angles, which have

the least impact on the returning solution. In the numerical results section, we verify this

behavior and show that the average of the even- and odd-parity solutions is indeed very

accurate for problems of this type.



70

0.0 0.2 0.4 0.6 0.8 1.0
−µ

0.0

0.5

1.0

1.5

2.0

2.5

A
lb

ed
o

Exact
Hybrid−Parity µ’=1.0

µ’=0.5

µ’=0.1

Fig. 8. Exact and hybrid-parity albedo weighting functions.

4. SAAF

We have shown that the SAAF equation is identical to the average of the even- and odd-

parity equations in the problem interior. Thus, our simple analysis of the hybrid-parity

method applies directly to the SAAF. The leading order solutions satisfy the same discrete

equations in the problem interior.

However, they may satisfy different discrete boundary conditions. If we use the stan-

dard SAAF boundary condition, equation (3.27c), we do not expect the SAAF solutions to

exactly agree with the hybrid parity solution. If, on the other hand, we use equation (3.31),

we expect exact agreement. We verify this in the numerical results section.

This behavior is unusual. Using the standard SAAF boundary condition,φ̃ satisfies a

µ+ 3
2µ2 weighting on outer boundaries, but a 3µ2 interface condition on internal interfaces.

Again, if we were to replace the standard SAAF boundary condition with equation (3.31),

we would expect̃φ to satisfy a 3µ2 weighting on both outer boundaries and on internal
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interface. Note thatφ satisfies a 2µ weighting on both outer boundaries and on internal

interfaces forboth forms of the SAAF boundary condition. Thus, the average ofφ̃ and

φ from a SAAF calculation will satisfy aµ+ 3
2µ2 weighted boundary condition on both

external boundaries and internal interfaces.

G. Implemenational Considerations

The linear continuous finite element method (LCFEM) on triangular and tetrahedral meshes

is an attractive method to consider for the even-parity equation. This method exhibits

second order accuracy for the diffusion equation and allows a high degree of geometric

flexibility with a relatively small number of spatial unknowns. However, it may not be ap-

propriate for the odd-parity equation. In fact, this discretization of the odd-parity equation

violates the discreteinf-supcondition [5]. The easiest way to see this is to consider the

linear system that results from equations (3.17).

From equation (3.17b) we see that the natural function space for the scalar fluxes is the

one generated by the gradient of the odd-parity angular flux basis functions. On a triangular

mesh with a linear continuous basis forψ�, the scalar fluxes are then piecewise constants

within each cell. The number of scalar fluxes is, therefore, roughly twice the number of

odd-parity angular fluxes. The right hand side of equation (3.17a) consists of anNI x NK

matrix operating on a scalar flux vector of lengthNK (whereNI andNK are the number

of vertices and cells, respectively). SinceNI < NK, this matrix has a non-zero null-space.

Thus, there are certain non-zero flux vectors that result in a zero right hand side. This has at

least two undesirable consequences. First, any scalar flux components that are in the null-

space are completely ignored by equation (3.17a). Second, the magnitude of such scalar

flux components are meaningless because they are not be damped by the leakage operator.

However, it appears that these undamped null-space modes are not usually present in
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realistic problems onregular meshes. In fact, all of our odd-parity XY numerical results

are calculated with a LCFEM implementation on triangular grids. On the other hand, we

have been able to obtain non-physical solutions by contriving problems that contain these

modes. Clearly, the LCFEM odd-parity system should be used only with great caution.

In order to understand why it is ever possible to obtain accurate odd-parity LCFEM

solutions on triangles, consider the odd-parity CFEM system written in matrix form:

L(Ω)ψ(Ω) =Wtφ+Ftq; (3.84a)

J = 2
Z

2π

Ωψ(Ω)dΩ; (3.84b)

D �J+Mφ =Wdφ+Fdq: (3.84c)

When the odd-parity system is discretized with linear continuous finite elements on a tri-

angular grid,L is aNI x NI symmetric positive definite matrix operating on an odd-parity

angular flux vector of lengthNI ; andWt is aNI x NK matrix operating on a scalar flux vector

of lengthNK (whereNI andNK are the number of vertices and cells, respectively). Since

NI < NK, Wt has a non-zero null-space.

When we attempt to evaluate equation (3.84c) with with no absorption (M =Wd), then

the matrix equation forφ is Aφ = b where,

A= D �2
Z

2π

ΩL�1(Ω)Wt dΩ:

Though we do not prove it, we note thatA itself is symmetric. In this case,L(Ω) is sym-

metric positive definite, so thatL�1(Ω) is non-singular. The matrixA, therefore, has the

same null-space as theNI x NK matrixWt . By the Fredholm Alternative theorem,Au= b

has a solution if and only if< b;z>= 0 for eachz such thatA�z= 0. SinceA = A� this
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implies that our fixed source vector must be orthogonal to the null-space vectors for a par-

ticular mesh for a solution to exist. As we show in Chapter VI, these null-space vectors

are symmetric and oscillate between positive and negative values on the regular meshes we

use for many of our calculations. We suggest that this unusual relation between the fixed

source and null-space ofA may hold on certain regular meshes, though it is not clear how

to prove or disprove this postulate. Finally, we stress that the odd-parity angular flux is not

subject to this problem. By that we mean that there is always a solution to equation (3.84a),

regardless of the details of the mesh and fixed source. We only face this issue only when

we attempt to solve equation (3.84c) for the scalar flux.

The SAAF LCFEM system is clearly also suceptible to undamped null-space error

modes via thẽφ term on the right hand side of equation (3.27a). If anisotropic scattering

was present, then the LCFEM even-parity discretization would also be subject to this prob-

lem. This is because the even-parity approximation to the current has the same functional

form as the odd-parity approximation to the scalar flux; piecewise constants within each

cell.

On a quadrilateral or hexahedral mesh, this discretization would not violate the dis-

crete inf-sup condition. However, these meshes do not allow the geometric flexibility of

the triangular and tetrahedral meshes.

Finally, letN be the number of angles andK the number of spatial cells on a triangular

mesh. Then, the LCFEM discretization of the even- or odd- parity method has1
4NK un-

knowns, so that the hybrid parity solution has a total of1
2NK. The LCFEM SAAF system,

like hybrid-parity, also has12NK unknowns.
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CHAPTER IV

MIXED FINITE ELEMENT DISCRETIZATION AND ANALYSIS

A more satisfying but correspondingly more costly resolution to the odd-parityinf-sup

violation involves reformulating the problem. We first note that it is physically appealing

to locate vector current unknowns on cell surfaces and scalar flux unknowns in cell centers.

While the fundamental unknown in the transport equation is, of course, a scalar function,

we can reformulate the even- and odd-parity equations as a coupled system of first-order

equations with a scalar and a vector unknown. Our reformulation allows us to employ

powerful MFEM methods to transport problems, and represents a significant departure

from conventional FEM transport discretizations.

In this chapter, we develop the mixed finite element method (MFEM) discretization of

the coupled parity equations and the coupled angular flux/angular current density (AFCD)

equations discussed in Chapter II. For each system, we begin in general 3D Cartesian ge-

ometry then reduce to slab geometry. We analyze the discretized equations in the thick

diffusion limit for both problems that are entirely diffusive and for problems that contain

adjacent diffusive and non-diffusive regions. We conclude with a discussion about the de-

tails of implementing specific mixed finite element methods and the properties of those

methods.

A. Coupled Even- and Odd-Parity System

We now use the wieghted residual method to form the coupled even- and odd- parity MFEM

discretization. First we multiply the analytic equations by weight functions, then we inte-

grate over the problem domain. The analytic unknowns can then be replaced with func-

tional expansions, which reduces the original problem to that of sovling a system of linear
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equations. The coupled parity system is given by:

∇ �ΩΩΨ++σtG� = 0: (4.1a)

∇ �G�+σtΨ+ =
σsΦ+Q

4π
; (4.1b)

along with its boundary condition,

(n �Ω)Ω
� 1

σt
∇ �G�� σsΦ+Q

4πσt

�
| {z }

�Ψ+

=�jn �Ωj(G��ΩF�) for r 2 ∂D: (4.1c)

Recall that we have previously definedG� to beΩΨ�.

1. XYZ Geometry

To begin, we dot equation (4.1a) with a set of vector weight functions (w�
i (r);1� i � I )

and integrate the result over the domain. Then, we multiply equation (4.1b) by a set of

scalar weight functions (v+k (r);1� k� K) and integrate the result over the domain. We

obtain equations of the form:

Z

D

∇ �ΩΩΨ+ �w�
i dV+

Z

D

σtG� �w�
i dV = 0: (4.2a)

and

Z

D

∇ �G�v+k dV+

Z

D

σtΨ+v+k dV =

Z

D

σsΦ+Q
4π

v+k dV; (4.2b)
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for each value ofi andk. We now manipulate equation (4.2a) so that we can incorporate

the boundary condition, equation (4.1c), naturally. We use identity (3.3) to obtain:

Z

D

∇ �
h
(Ω �w�

i )(ΩΨ+)
i

dV�
Z

D

Ψ+∇ �Ω(Ω �w�
i )dV

+
Z

D

σtG� �w�
i dV = 0: (4.3)

We apply Green’s theorem to the first term in equation (4.3) to obtain:

Z

∂D

(n �Ω)(ΩΨ+) �w�
i dS�

Z

D

Ψ+∇ �Ω(Ω �w�
i )dV+

Z

D

σtG� �w�
i dV = 0: (4.4)

After inserting equation (4.1c) into the surface integral, we arrive at:

Z

∂D

jn �Ωj(G��ΩF�) �w�
i dS�

Z

D

Ψ+∇ �Ω(Ω �w�
i )dV

+
Z

D

σtG� �w�
i dV = 0: (4.5)

Now we expand the analytic unknowns with the following basis funcitions:

G�(r ;Ω) ' g�(r ;Ω) =
I

∑
j=1

g�j (Ω)b�j (r); (4.6a)

Ψ+(r ;Ω)' ψ+(r ;Ω) =
K

∑
l=1

ψ+
l (Ω)d+

l (r); (4.6b)

and

Φ+(r)' φ+(r) =
K

∑
l=1

φ+
l d+

l (r) whereφ+
l = 2

Z

2π

ψ+
l (Ω)dΩ; (4.6c)
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to obtain:

Z

∂D

jn �Ωj(g��Ω f�) �w�
i dS�

Z

D

ψ+∇ �Ω(Ω �w�
i )dV

+

Z

D

σtg� �w�
i dV = 0; (4.7a)

Z

D

(∇ �g�)v+k dV+

Z

D

σtψ+v+k dV =

Z

D

σsφ++q+

4π
v+k dV: (4.7b)

We know of noa priori reason we cannot mass lump either equation (4.7a) or (4.7b).

2. Slab Geometry

In this section, we develop a slab geometry discretization for equations (4.7). We use a one-

dimensional analog of the lowest order Raviart-Thomas [40] elements on the grid shown in

Fig. 4. In this approximation, the normal component of the vector unknown is continuous

across cell edges and the scalar unknown is constant within each cell. We apply Galerkin

weighing and expandg� with linear continuous elments andψ+ with piecewise constants:

w�
j+1=2 = b�j+1=2 =

8>>>>>><
>>>>>>:

(xj+3=2�x)=(xj+3=2�xj+1=2) for x2 (xj+1=2;xj+3=2)

(x�xj�1=2)=(xj+1=2�xj�1=2) for x2 (xj�1=2;xj+1=2)

0 otherwise;

v+j = d+
j =

8>><
>>:

1 for x2 (xj�1=2;xj+1=2)

0 otherwise:

The equations governing the boundary cells are:

jµj(g�1=2�µ f�l )+µ2ψ+
1 +

σt1∆x1

3
g�1=2+

σt1∆x1

6
g�3=2 = 0 for j = 1; (4.8a)
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and

jµj(g�J+1=2�µ f�r )�µ2ψ+
J +

σt1∆x1

6
g�J�1=2+

σt1∆x1

3
g�J+1=2 = 0 for j = J: (4.8b)

For the interior cells we have:

µ2(ψ+
j+1�ψ+

j )+
σt j∆xj

6
g�j�1=2+

�σt j∆xj

3
+

σt j+1∆xj+1

3

�
g�j+1=2

+
σt j+1∆xj+1

6
g�j+3=2 = 0 for j = 2::J�1: (4.8c)

We also have the following cell centered balance equation that holds for all cells:

(g�j+1=2�g�j�1=2)+σt j∆xjψ+
j =

∆xj

2
(σs jφ+

j +q+j ) for j = 1::J: (4.8d)

With mass matrix lumping we arrive at the following equations for the boundary cells:

jµj(g�1=2�µ f�l )+µ2ψ+
1 +

σt1∆x1

2
g�1=2 = 0 for j = 1; (4.9a)

and

jµj(g�J+1=2�µ f�r )�µ2ψ+
J +

σt1∆x1

2
g�J+1=2 = 0 for j = J: (4.9b)

In the interior, we have:

µ2(ψ+
j+1�ψ+

j )+
�σt j∆xj

2
+

σt j+1∆xj+1

2

�
g�j+1=2 = 0 for j = 2::J�1; (4.9c)

and the cell centered balance equation is unchanged.

We note that both the lumped and unlumped slab geometry coupled parity discretiza-

tions are equivalent to their odd-parity CFEM counterparts developed in Chapter III. This

is not the case in multidimensional geometry, however.
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B. Angular Flux/Current Density System

Now we apply the weighted residual method to the coupled AFCD equations which we

rewrite here:

∇ �ΩΩΨ+σtG = Ω
σsΦ+Q

4π
; (4.10a)

∇ �G+σtΨ =
σsΦ+Q

4π
; (4.10b)

Gb(r ;Ω) for r 2 ∂D =

8>><
>>:

ΩF(r ;Ω) for n �Ω < 0

G for n �Ω > 0:

(4.10c)

1. XYZ Geometry

We dot equation (4.10a) with a set of vector weight functions (wi(r);1� i � I )and integrate

over the domain. Then we multiply equation (4.10b) by a set of scalar weight functions

(vk(r);1� k� K) and integrate the result over the domain. We obtain equations of the

form:

Z

D

∇ �ΩΩΨ �wi dV+
Z

D

σtG �wi dV =
Z

D

σsΦ+Q
4π

(Ω �wi)dV; (4.11a)

Z

D

∇ �GvkdV+

Z

D

σtΨvkdV =

Z

D

σsΦ+Q
4π

vk dV: (4.11b)

We apply identity (3.3) to the streaming term of equation (4.11a) to obtain:

Z

D

∇ �
h
(ΩΨ)(Ω �wi)

i
dV�

Z

D

Ψ∇ �Ω(Ω �wi)dV+
Z

D

σtG �wi dV

=
Z

D

σsΦ+Q
4π

(Ω �wi)dV: (4.12)
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Using Green’s theorem on the first term in equation (4.12) allows us to replaceΩΨ with

Gb to obtain:

Z

∂D

(n �Ω)Gb �wi dS�
Z

D

Ψ∇ �Ω(Ω �wi)dV+

Z

D

σtG �wi dV

=
Z

D

σsΦ+Q
4π

(Ω �wi)dV: (4.13)

Now we expand the analytic unknowns:

G(r ;Ω) ' g(r ;Ω) =
I

∑
j=1

gj(Ω)b j(r); (4.14a)

Ψ(r ;Ω)' ψ(r ;Ω) =
K

∑
l=1

ψl(Ω)dl (r); (4.14b)

and

Φ(r)' φ(r) =
K

∑
l=1

φl dl(r) whereφl =
Z

4π

ψl (Ω)dΩ; (4.14c)

to arrive at:

Z

∂D

(n �Ω)gb �wi dS�
Z

D

ψ∇ �Ω(Ω �wi)dV+
Z

D

σtg�wi dV

=

Z

D

σsφ+q
4π

(Ω �wi)dV; (4.15a)

Z

D

∇ �gvkdV+
Z

D

σtψvk dV =
Z

D

σsφ+q
4π

vkdV; (4.15b)

where,

gb(r ;Ω) for r 2 ∂D =

8>><
>>:

Ω f (r ;Ω) for n �Ω < 0

g for n �Ω > 0:

(4.15c)
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2. Slab Geometry

Now we apply the same slab geometry discretization as we did for the coupled parity equa-

tions:

wj+1=2 = bj+1=2 =

8>>>>>><
>>>>>>:

(xj+3=2�x)=(xj+3=2�xj+1=2) for x2 (xj+1=2;xj+3=2)

(x�xj�1=2)=(xj+1=2�xj�1=2) for x2 (xj�1=2;xj+1=2)

0 otherwise;

vj = dj =

8>><
>>:

1 for x2 (xj�1=2;xj+1=2)

0 otherwise:

The boundary cells equations are:

�µgl +µ2ψ1+
σt1∆x1

3
g1=2+

σt1∆x1

6
g3=2

=
µ
4
(σs1∆x1φ1+∆x1q1) for j = 1; (4.16a)

and

µgr �µ2ψJ +
σtJ∆xJ

6
gJ�1=2+

σtJ∆xJ

3
gJ+1=2

=
µ
4
(σsJ∆xJφJ+∆xJqJ) for j = J; (4.16b)

where,

gl =

8>><
>>:

µ fl for µ> 0

g1=2 for µ< 0;

gr =

8>><
>>:

gJ+1=2 for µ> 0

µ fr for µ< 0:

(4.16c)
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For the interior cells we have:

µ2(ψ j+1�ψ j)

+
σt j∆xj

6
gj�1=2+

�σt j∆xj

3
+

σt j+1∆xj+1

3

�
gj+1=2+

σt j+1∆xj+1

6
gj+3=2

=
µ
4

h
(σs j∆xjφ j +∆xjqj)+(σs j+1∆xj+1φ j+1+∆xj+1qj+1)

i
for j = 2::J�1: (4.16d)

We also have a cell centered balance equation:

(gj+1=2�gj�1=2)+σt j∆xjψ j =
∆xj

2
(σs jφ j +qj) for j = 1::J: (4.16e)

We can again lump the mass matrix:

� µgl + µ2ψ1 +
σt1∆x1

2
g1=2 =

µ
4
(σs1∆x1φ1 + ∆x1q1) for j = 1; (4.17a)

and

µgr � µ2ψJ +
σtJ∆xJ

2
gJ+1=2 =

µ
4
(σsJ∆xJφJ + ∆xJqJ) for j = J: (4.17b)

For the interior cells mass matrix lumping produces:

µ2(ψ j+1�ψ j)+
�σt j∆xj

2
+

σt j+1∆xj+1

2

�
gj+1=2

=
µ
4

h
(σs j∆xjφ j +∆xjqj)+(σs j+1∆xj+1φ j+1+∆xj+1qj+1)

i
for j = 2::J�1: (4.17c)

The cell centered balance equation is unchanged by lumping.

By solving equation (4.16e) forψ j , we can replace the cell centered unknowns in

equation (4.17c) with cell edge unknowns. The resulting system is very nearly identical to

the slab geometry SAAF equations. However, there is one important difference. In the case
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of the SAAF system, a scalar flux is explicitly defined for cell edge quantities. Here, the

term that corresponds to the cell edge SAAF scalar flux is the average of the two adjacent

cell centered scalar fluxes.

C. Discrete Diffusion Limit Analysis

We now analyze the behavior of equations (4.7) and (4.15) in the thick diffusion limit. Our

procedure involves scaling the discretized equations as in equation (2.32), then requiring

the resulting equations to hold form like powers of the scaling parameterε.

1. Coupled Parity

We introduce the scaling shown in equation (2.32) into the coupled parity system to obtain:

Z

∂D

jn �Ωj(g��Ω f�) �w�
i dS�

Z

D

ψ+∇ �Ω(Ω �w�
i )dV

+
Z

D

σt

ε
g� �w�

i dV = 0; (4.18a)

Z

D

(∇ �g�)v+k dV+
Z

D

σt

ε
ψ+v+k dV =

Z

D

(σt
ε � εσa)φ++ εq+

4π
v+k dV: (4.18b)

We introduce the following ansatz:

g� = g�[0]+ εg�[1]+ ε2g�[2]+ :::; (4.19a)

ψ+ = ψ+[0]+ εψ+[1]+ ε2ψ+[2]+ :::; (4.19b)

φ+ = φ+[0]+ εφ+[1]+ ε2φ+[2]+ ::: whereφ+[k] =
Z

4π

ψ+[k] dΩ; (4.19c)
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into the scaled systems then require that the resulting systems hold for each power ofε.

The O(1=ε) terms in equations (4.18a) and (4.18b) are:

Z

D

σtg�[0] �w�
i dV = 0 (4.20a)

Z

D

σtψ+[0]v+k dV =

Z

D

σtφ+[0]

4π
v+k dV: (4.20b)

Under the assumption of invertible mass matrices, these equations imply that the leading

order angular current density is zero,

g�[0] = 0; (4.21a)

and that the leading order even-parity angular flux is isotropic,

ψ+[0] =
φ+[0]

4π
: (4.21b)

Now, we consider the O(1) terms in equation (4.18a):

Z

∂D

jn �Ωj(g�[0]�Ω f�) �w�
i dS�

Z

D

ψ+[0]∇ �Ω(Ω �w�
i )dV

+
Z

D

σtg�[1] �w�
i dV = 0; (4.22)

Using the results from equations (4.21a) and (4.21b) we can integrate over angle to arrive

at:

1
3

Z

∂D

�
2n �

Z

n�Ω<0

3ΩΩ f� dΩ
�
�w�

i dS� 1
3

Z

D

φ+[0]∇ �w�
i dV

+
Z

D

σt

�
2
Z

2π

g�[1] dΩ
�
�w�

i dV = 0; (4.23)
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We turn our attention to the O(ε) terms in equation (4.18b):

Z

D

(∇ �g�[1])v+k dV+

Z

D

σtψ+[2]v+k dV =

Z

D

σtφ+[2]�σaφ+[0]+q+

4π
v+k dV: (4.24)

We integrate equation (4.24) over angle to find that:

Z

D

∇ �
�Z

2π

g�[1] dΩ
�

v+k dV+

Z

D

σaφ+[0]v+k dV =

Z

D

q+v+k dV: (4.25)

Thus, we find that the leading order coupled parity solution satisfies the following coupled

diffusion system in the thick diffusive limit:

1
3

Z

∂D

�
2n �

Z

n�Ω<0

3ΩΩ f� dΩ
�
�w�

i dS� 1
3

Z

D

φ+[0]∇ �w�
i dV

+
Z

D

σt

�
2
Z

2π

g�[1] dΩ
�
�w�

i dV = 0; (4.26a)

Z

D

∇ �
�Z

2π

g�[1] dΩ
�

v+k dV+
Z

D

σaφ+[0]v+k dV =
Z

D

q+v+k dV: (4.26b)

If Raviart-Thomas elements are used to discretize equations (4.26) thenf� need not be be

symmetric about the outward normal for us to have:

n �
�

2
Z

n�Ω<0

3ΩΩ f� dΩ
�
= n

�
2

Z

n�Ω<0

3jn �Ωj2 f�dΩ
�
= nφrt

b : (4.26c)

since theRT0 weight and basis functions are normal to cell faces. This system is simply

a mixed finite element discretization to the diffusion equation subject to a potentially in-

accurate boundary condition. The weighting function is identical the odd-parity weighing

function shown in Fig. 6, therefore, we expect the average of CFEM even- parity results

and MFEM odd-parity results to be accurate for thick diffusive problems.



86

2. AFCD

We now consider the diffusion limit of the discrete AFCD equations. We find that it does

indeed limit to a MFEM discretization of the diffusion equation with a complex boundary

condition. However, unlike the other discretizations we have examineded, in order to in-

terpret the boundary condition, we are forced to consider the slab geometry case. Though

this is not as rigorous, we fully expect that the essential characteristics of this method

are sufficiently characterized in slab geometry, given that diffusive boundaries are essen-

tially one-dimensional. By that, we mean in a thick, diffusive problem the curvature of the

boundary is an orderε quantity and should not affect the leading order solution.

We scale the discrete AFCD system in the standard way,

Z

∂D

(n �Ω)gb �wi dS�
Z

D

ψ∇ �Ω(Ω �wi)dV+
Z

D

σt

ε
g�wi dV

=
Z

D

(σt
ε � εσa)φ+q

4π
(Ω �wi)dV; (4.27a)

Z

D

∇ �gvkdV+

Z

D

σt

ε
ψvk dV =

Z

D

(σt
ε � εσa)φ+q

4π
vk dV; (4.27b)

and introduce the ansatz:

g= g[0]+ εg[1]+ ε2g[2]+ :::; (4.28a)

ψ = ψ[0]+ εψ[1]+ ε2ψ[2]+ :::; (4.28b)

φ = φ[0]+ εφ[1]+ ε2φ[2]+ ::: whereφ[k] =
Z

4π

ψ[k] dΩ; (4.28c)
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and require the scaled equations to hold for each power ofε. The O(1/ε) equations are:

Z

D

σtg[0] �wi dV =

Z

D

σtφ[0]

4π
(Ω �wi)dV; (4.29a)

and

Z

D

σtψ[0]vk dV =

Z

D

σtφ[0]

4π
vk dV: (4.29b)

Equation (4.29b) implies that the leading order angular flux is isotropic, as expected. The

O(1) terms of equation (4.27a) are:

Z

∂D

(n �Ω)g[0]b �wi dS�
Z

D

ψ[0]∇ �Ω(Ω �wi)dV+
Z

D

σtg[1] �wi dV

=

Z

D

σtφ[1]

4π
(Ω �wi)dV: (4.30)

Making use of the fact that the leading order angular flux is isotropic, we integrate this over

angle to obtain:

Z

∂D

n �
�Z

4π

Ωg[0]b dΩ
�
�wi dS� 1

3

Z

D

φ[0]∇ �wi dV

+
Z

D

σt

�Z
4π

g[1] dΩ
�
�wi dV = 0: (4.31)

Now, we examine the O(ε) terms in equation (4.27b). If we integrate this over angle,

we obtain another equation relatingφ[0] andg[1]. Hence, we find that our leading order

scalar flux satisfies the following diffusion discretization in the thick diffusion limit:

Z

∂D

n �
�Z

4π

Ωg[0]b dΩ
�
�wi dS� 1

3

Z

D

φ[0]∇ �wi dV

+
Z

D

σt

�Z
4π

g[1] dΩ
�
�wi dV = 0: (4.32a)
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Z

D

∇ �
�Z

4π

g[1] dΩ
�

vj dV+
Z

D

σaφ[0]vj dV =
Z

D

qvk dV: (4.32b)

Finally, we examine the boundary integral in equation (4.32a) in more detail. We have

found that proceeding with this analysis in three dimensions with generic weight and basis

functions is intractable. Therefore, we continue in slab geometry with lumped linear finite

elements. On the left boundary we have:

�µg[0]l +µ2ψ[0]
1 +

σt1∆x1

2
g[1]1=2 =

µ
4

σt1∆x1φ[1]
1 ; (4.33a)

where

gl =

8>><
>>:

µ fl for µ> 0

g[0]1=2 for µ< 0:

(4.33b)

We take the zeroth moment of equation (4.33) to arrive at:

�
1Z

�1

µg[0]l dµ+
1
3

φ[0]
1 +

σt1∆x1

2

1Z

�1

g[1]1=2dµ= 0: (4.34)

Substituting forg[0]l :

�
� 0Z

�1

µg[0]1=2dµ+

1Z

0

µ2 fl dµ
�
+

1
3

φ[0]
1 +

σt1∆x1

2

1Z

�1

g[1]1=2dµ= 0: (4.35)

In slab geometry, equation (4.29a) reduces tog[0]1=2 = µφ[0]
1 =2 so that we have:

�1
3

�φ[0]
1

2
+

1Z

0

3µ2 fl dµ
�
+

1
3

φ[0]
1 +

σt1∆x1

2

1Z

�1

g[1]1=2dµ= 0: (4.36)
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Thus,

1Z

�1

g[1]1=2dµ=�1
3

φ[0]
1 �2

1R
0

3µ2 fl dµ

σt1∆x1
: (4.37)

The above equation represents a 3µ2 weighting of the incoming angular flux spatially lo-

catedone half cell to the left of the physical boundary. In the odd-parity system, the corre-

sponding relation is:

1Z

�1

g�[1]
1=2 dµ=�1

3

φ�[0]
1 �2

1R
0

3µ2 fl dµ

(σt1∆x1=2)
: (4.38)

Thus, the odd-parity boundary flux is located on the actual left boundary. This means

that for thick diffusive problems driven by incoming angular fluxes, we expect the AFCD

boundary scalar flux to be lower than the odd-parity result. However, if the first cell were

made thin, then both methods should agree. We confirm this behavior in the numerical

results section.

D. Internal Interface Analysis

1. Coupled Parity

As we noted above, the slab geometry linear finite element approximation of the coupled

parity equations is equivalent to the corresponding discretization of the odd-parity equa-

tions. Thus, those results directly hold here.

2. AFCD

Our ability to analyze the internal interface problem is due, in large part, to our solid under-

standing of the even- and odd-parity systems. They are unique in that we can derive explicit
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expressions for both the mangitude of the scalar flux on the transport/diffusive interface,

and for the angular shape and magnitude of the flux that returns back into the transport

region.

Our attempts to analyze the AFCD system have thus far been fruitless. Inevitably, we

arrive at systems that couple both upstream and downstream unknowns, making it impossi-

ble to derive simple, closed form expressions for the quantities we desire. We confess that

we do not fully understand the behavior of the AFCD system at an internal interface.

However, we conjecture that, because of the fact that the AFCD system behaves much

like the odd-parity system at external boundaries, the AFCD solution at an internal interface

should be similar to the odd-parity solution. We test this prediction in the numerical results

section, and find that it appears warranted.

E. Implementational Considerations

An attractive discretization to consider is the lowest order Raviart-Thomas (RT0) method.

It is derived in such a way that the normal component of the vector unknown is continuous

(and, in fact, constant) on each face. The scalar unknown lives in the finite element space

generated by the gradient of the vector basis functions. In theRT0 case on triangles, the

scalar flux would be piecewise constant within each element. The vector basis functions

have the following form:

b(r) = (a+cx)i +(b+cy)j : (4.39)

This method is well established for triangles, rectangles and tetrahedra [59, 5]. Re-

cently, several researchers have developed methods for logically rectangular grids that re-

duce to the Raviart-Thomas discretization on an orthogonal mesh [60, 61].

The vector unknown exhibits first order convergence, but the scalar unknown is second
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order. In terms of unknowns, theRT0 method has a vector unknown on each face and a

scalar unknown in each cell. On the downside, the linear systems that result from this type

of mixed FEM are symmetric but possibly indefinite. They are of the form:2
64 A B

BT C

3
75
2
64g

ψ

3
75 =

2
64S

Q

3
75 ;

whereψ represents a vector of scalar unknowns andg is a vector ofvector unknowns.

Since mixed FEM methods have become so popular of late, efficient iterative methods for

saddle point problems like this have been developed [62]. Finally, we note that theRT0

method has an unknown on each cell face and an unknown in each cell center so that the

CP discretization will have 5NK=4 total unknowns and the AFCD discretization 5NK=2

unknowns whereN andK are again the number of angles and cells, respectively. We note

that if we use theRT0 coupled-parity method along with the CFEM even-parity method to

form a hybrid-parity solution, there are a total of 3NK=2 unknowns.
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CHAPTER V

ITERATIVE METHODS

In this chapter we discuss the iterative methods used to solve the within-group scattering

problem. Historically, the source iteration (SI) method has been the most frequently used

technique. However, it is well known that SI can converge arbitrarily slowly for problems

that are dominated by scattering.

Many methods have been proposed to solve the within-group problem more efficiently.

Synthetic acceleration [32, 33, 34, 35, 55, 56, 36, 57, 63], coarse mesh rebalance [64],

quasi-diffusion [65, 66, 67], and boundary projection acceleration [68] have all been im-

plemented with various degrees of success, though no method has emerged as the best

choice for all problems.

Here, we focus on developing DSA schemes for our discretizations. Because of their

underlying form (self-adjoint, second order transport operators) we expect that successful

implementation of multidimensional DSA will be straightforward, whereas this is noto-

riously difficult for discretizations of the first order transport equation. Our procedure

consists of the following steps.

1. Subtract the discrete source iteration equations from the converged equations to form

discretecorrectionequations.

2. Take the zeroth and first moments of the correction equations, assuming that the

corrections are linearly anisotropic in angle.

3. Eliminate the first moments to obtain a single diffusion equation.

These steps are equivalent to Larsen’s 4-step procedure. We note that it may not be possible,

or desirable, to form a single diffusion equation for all of the discretizations we consider.
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For each method we first present the source iteration scheme, then derive discrete DSA

systems.

Finally, we note that if the within-group problem can be cast in a form that is symmet-

ric positive definite under some norm, the conjugate gradient (CG) method [69, 54, 70] can

be used. The CFEM even- and odd-parity operators are symmetric positive definite under

the followingscatteringinner product:

hu;vis=
I

∑
i=1

σsiuiviVi (5.1)

whereVi is the volume of theith cell.

A. Even-Parity DSA

The source iteration scheme for the even-parity system is given by:

Z

∂D

jn �Ωj(ψ+(`+1=2)� f+)w+
i dS+

Z

D

(Ω �∇w+
i )

1
σt

(Ω �∇ψ+(`+1=2))dV

+
Z

D

σtψ+(`+1=2)w+
i dV =

Z

D

σsφ+(`)+q+

4π
w+

i dV; (5.2a)

φ+(`+1) = φ+(`+1=2) = 2
Z

2π

ψ+(`+1=2)dΩ; (5.2b)

If we define the additive corrections:

γ+(`+1=2) = ψ+�ψ+(`+1=2); (5.3a)

and

Γ+(`+1=2) = φ+�φ+(`+1=2)= 2
Z

2π

γ+(`+1=2)dΩ; (5.3b)
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then subtract equation (5.2a) from the converged system, we obtain an exact equation for

the corrections:

Z

∂D

jn �Ωjγ+(`+1=2)w+
i dS+

Z

D

(Ω �∇w+
i )

1
σt

(Ω �∇γ+(`+1=2))dV

+
Z

D

σtγ+(`+1=2)w+
i dV =

Z

D

σs

4π

h
Γ+(`+1=2)+(φ+(`+1=2)�φ+(`))

i
w+

i dV: (5.4)

We take the zeroth moment of equation (5.4) to obtain:

Z

∂D

�Z
4π

jn �Ωjγ+(`+1=2)dΩ
�

w+
i dS+

Z

D

hZ
4π

(Ω �∇w+
i )

1
σt

(Ω �∇γ+(`+1=2))dΩ
i

dV

+
Z

D

σaΓ+(`+1=2)w+
i dV =

Z

D

σs(φ+(`+1=2)�φ+(`))w+
i dV: (5.5)

Clearly, the first moment of equation (5.4) is zero, since all of the terms in that equation are

even in angle. At this point, we enforce the assumption thatγ+(`+1=2) is linearly anisotropic.

That is:

γ+(`+1=2)' 1
2π

Z

2π

γ+ dΩ+
3

4π
Ω �

Z

4π

Ωγ+(`+1=2)dΩ =
1

4π
Γ+(`+1=2):

(SinceΩγ+(`+1=2) is an odd function, its angular integral is zero.) We arrive at:

Z

∂D

1
2

Γ+(`+1=2)w+
i dS+

Z

D

1
3σt

(∇w+
i ) � (∇Γ+(`+1=2))dV

+

Z

D

σaΓ+(`+1=2)w+
i dV =

Z

D

σs(φ+(`+1=2)�φ+(`))w+
i dV; (5.6)

where we have used the fact that

Z

4π

jn �ΩjdΩ = 2π:
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Hence, the DSA iteration scheme for the even-parity CFEM system is:

Z

∂D

jn �Ωj(ψ+(`+1=2)� f+)w+
i dS+

Z

D

(Ω �∇w+
i )

1
σt

(Ω �∇ψ+(`+1=2))dV

+

Z

D

σtψ+(`+1=2)w+
i dV =

Z

D

σsφ+(`)+q+

4π
w+

i dV; (5.7a)

φ+(`+1=2)= 2
Z

2π

ψ+(`+1=2)(Ω)dΩ; (5.7b)

Z

∂D

1
2

Γ+(`+1=2)w+
i dS+

Z

D

1
3σt

(∇w+
i ) � (∇Γ+(`+1=2))dV

+

Z

D

σaΓ+(`+1=2)w+
i dV =

Z

D

σs(φ+(`+1=2)�φ+(`))w+
i dV; (5.7c)

φ+(`+1) = φ+(`+1=2)+Γ+(`+1=2): (5.7d)

We can analyze this iterative scheme with lumped linear continuous finite elements in

slab geometry. The discrete equations in the interior with constant material properties and

mesh size are:

�µ2
�ψ+(`+1=2)

j+3=2 �ψ+(`+1=2)
j+1=2

∆x2 �
ψ+(`+1=2)

j+1=2 �ψ+(`+1=2)
j�1=2

∆x2

�
+ψ+(`+1=2)

j+1=2 =
c
2

φ+(`)
j+1=2; (5.8a)

φ+(`+1=2)
j+1=2 = 2

1Z

0

ψ+(`+1=2)
j+1=2 dµ; (5.8b)

� 1
3

�Γ+(`+1=2)
j+3=2 �Γ+(`+1=2)

j+1=2

∆x2 �
Γ+(`+1=2)

j+1=2 �Γ+(`+1=2)
j�1=2

∆x2

�
+(1�c)Γ+(`+1=2)

j+1=2

= c(φ+(`+1=2)
j+1=2 �φ+(`)

j+1=2); (5.8c)
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and, finally,

φ+(`+1)
j+1=2 = φ+(`+1=2)

j+1=2 +Γ+(`+1=2)
j+1=2 : (5.8d)

We propose the following ansatz:

ψ+(`)
j+1=2 = ω`a(µ)eıλxj+1=2; (5.9a)

φ+(`)
j+1=2 = ω`Aeıλxj+1=2; (5.9b)

Γ+(`+1=2)
j+1=2 = ω`Beıλxj+1=2: (5.9c)

After inserting the ansatz into equations (5.8), we find that:

a(µ) =
cA

2(1+µ2Λ2)
; (5.10a)

and

ω(λ) =
c
Λ

arctan(Λ)+
c2

Λ arctan(Λ)�c

(1�c)+ 1
3Λ2

whereΛ =
2

∆x
sin(λ∆x=2): (5.10b)

The spectral radius is given by:

ρ+
dsa= sup

λ
jω(λ)j � 0:2247c: (5.10c)

This result is identical to the spatially analytic case discussed in Chapter II. We, therefore,

expect the even-parity DSA iteration scheme to be very effective.
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B. Odd-Parity DSA

Now we consider the odd-parity equations. We begin with the source iteration equations:

Z

∂D

jn �Ωj(ψ�(`+1=2)� f�)w�
i dS+

Z

D

(Ω �∇w�
i )

1
σt

(Ω �∇ψ�(`+1=2))dV

+
Z

D

σtψ�(`+1=2)w�
i dV =

Z

D

(Ω �∇w�
i )

σsφ�(`)+q�

4πσt
dV; (5.11a)

J�(`+1=2) = 2
Z

2π

Ωψ�(`+1=2)dΩ; (5.11b)

Z

D

∇ �J�(`+1=2)v�k dV+
Z

D

σtφ�(`+1=2)v�k dV =
Z

D

(σsφ�(`)+q�)v�k dV; (5.11c)

φ�(`+1) = φ�(`+1=2): (5.11d)

Note that the right hand side of equation (5.11c) involves the`th iterate of the scalar flux.

This allows us to calculate the scalar flux even whenσa = 0. Now, we form the exact equa-

tion for the corrections by subtracting equations (5.11a) and (5.11c) from their converged

forms. We have:

Z

∂D

jn �Ωjγ�(`+1=2)w�
i dS+

Z

D

(Ω �∇w�
i )

1
σt

(Ω �∇γ�(`+1=2))dV+
Z

D

σtγ�(`+1=2)w�
i dV

=
Z

D

(Ω �∇w�
i )

σs

4πσt

h
Γ�(`+1=2)+(φ�(`+1=2)�φ�(`))

i
dV; (5.12a)
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Z

D

∇ �Γ�(`+1=2)
1 v�k dV+

Z

D

σtΓ�(`+1=2)v�k dV

=
Z

D

σs

h
Γ�(`+1=2)+(φ�(`+1=2)�φ�(`))

i
v�k dV: (5.12b)

We have defined the following additive corrections:

γ�(`+1=2) = ψ��ψ�(`+1=2); (5.13a)

Γ�(`+1=2) = φ��φ�(`+1=2); (5.13b)

Γ�(`+1=2)
1 = J��J�(`+1=2): (5.13c)

Equation (5.12a) can be greatly simplified by making the following definition:

γ�(`+1=2)
e =

1
4πσt

h
σsΓ�(`+1=2)+σs(φ�(`+1=2)�φ�(`))

i
� 1

σt
(Ω �∇γ�(`+1=2));

where

Γ�(`+1=2)= 2
Z

2π

γ�(`+1=2)
e dΩ:

Here,γ�(`+1=2)
e is a correction to the even-parity angular flux that, while not explicitly cal-

culated in our formulation, underlies the odd-parity scalar flux. The odd-parity corrections

equations become:

Z

∂D

jn �Ωjγ�(`+1=2)w�
i dS�

Z

D

(Ω �∇w�
i )γ

�(`+1=2)
e dV

+
Z

D

σtγ�(`+1=2)w�
i dV = 0; (5.14a)
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Z

D

∇ �Γ�(`+1=2)
1 v�k dV+

Z

D

σtΓ�(`+1=2)v�k dV

=
Z

D

h
σsΓ�(`+1=2)+σs(φ�(`+1=2)�φ�(`))

i
v�k dV: (5.14b)

Now we again assume that the corrections are linearly anisotropic:

γ�(`+1=2) =
3

4π
Ω �Γ�(`+1=2)

1 ;

and

γ�(`+1=2)
e =

1
4π

Γ�(`+1=2):

In this case, we need only take the first moment of equation (5.14a) to obtain the DSA

iteration scheme for the odd-parity CFEM system:

Z

∂D

jn �Ωj(ψ�(`+1=2)� f�)w�
i dS+

Z

D

(Ω �∇w�
i )

1
σt

(Ω �∇ψ�(`+1=2))dV

+
Z

D

σtψ�(`+1=2)w�
i dV =

Z

D

(Ω �∇w�
i )

σsφ�(`)+q�

4πσt
dV; (5.15a)

J�(`+1=2) = 2
Z

2π

Ωψ�(`+1=2)dΩ; (5.15b)

Z

D

∇ �J�(`+1=2)v�k dV+
Z

D

σtφ�(`+1=2)v�k dV =
Z

D

(σsφ�(`)+q�)v�k dV; (5.15c)

Z

∂D

3
2π

�Z
2π

jn �ΩjΩΩdΩ
�
�Γ�(`+1=2)

1 w�
i dS+

Z

D

1
3

Γ�(`+1=2)∇w�
i dV

+
Z

D

σtΓ�(`+1=2)
1 w�

i dV = 0; (5.15d)
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Z

D

∇ �Γ�(`+1=2)
1 v�k dV+

Z

D

σaΓ�(`+1=2)v�k dV

=
Z

D

σs(φ�(`+1=2)�φ�(`))v�k dV; (5.15e)

φ�(`+1) = φ�(`+1=2)+Γ�(`+1=2): (5.15f)

In this case, we cannot collapse equations (5.15d) and (5.15e) into a single diffusion equa-

tion unless we make a number of assumptions regarding the weight and basis functions.

For example, if we were to use lumped linear continuous elements, we could form a single

cell-centered diffusion equation for the scalar flux corrections. We note that this equation

becomes singular whenσa = 0. In practice, we overcome this difficulty by introducing a

small amount of false absorption that is set according to the geometric size of the prob-

lem under consideration. Specifically, we calculate the geometric buckling of the problem

and a simple volume averaged diffusion coefficient. We then use the product of these two

numbers (DB2) in place of the absorption cross section.

Again, we can analyze this scheme in slab geometry with lumped linear continuous

finite elements. In the problem interior, the equations for the model problem are:

�µ2
�ψ�(`+1=2)

j+3=2 �ψ�(`+1=2)
j+1=2

∆x2 �
ψ�(`+1=2)

j+1=2 �ψ�(`+1=2)
j�1=2

∆x2

�
+ψ�(`+1=2)

j+1=2

=� µc
2∆x

(φ�(`)
j+1 �φ�(`)

j ); (5.16a)

2

1Z

0

µ
∆x

(ψ�(`+1=2)
j+1=2 �ψ�(`+1=2)

j�1=2 )dµ+φ�(`+1=2)
j = cφ�(`)

j (5.16b)



101

� 1
3

�Γ�(`+1=2)
j+1 �Γ�(`+1=2)

j

∆x2 �
Γ�(`+1=2)

j �Γ�(`+1=2)
j�1

∆x2

�
+(1�c)Γ�(`+1=2)

j

= c(φ�(`+1=2)
j �φ�(`)

j ); (5.16c)

and finally,

φ�(`+1)
j = φ�(`+1=2)

j +Γ�(`+1=2)
j : (5.16d)

We propose the following ansatz:

ψ�(`+1=2)
j+1=2 = ω`a(µ)eıλxj+1=2 (5.17a)

φ�(`)
j = ω`Aeıλxj (5.17b)

Γ�(`+1=2)
j = ω`Beıλxj (5.17c)

After inserting the ansatz into equations (5.16), we find that:

a(µ) =�ıµΛ
cA

2(1+µ2Λ2)
; (5.18a)

and, just as in the even-parity case,

ω(λ) =
c
Λ

arctan(Λ)+
c2

Λ arctan(Λ)�c

(1�c)+ 1
3Λ2

: (5.18b)

The spectral radius is:

ρ�dsa= sup
λ
jω(λ)j � 0:2247c: (5.18c)

Thus, odd-parity DSA should perform extremely well in slab geometry.
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C. Odd-Parity Conjugate Gradient

We now briefly consider the application of the conjugate gradient method to the within-

group problem. First, we rewrite the odd-parity CFEM source iteration system in matrix

form:

L(Ω)ψ(`+1)(Ω) =Wtφ(`)+Ftq; (5.19a)

J(`+1) = 2
Z

2π

Ωψ(`+1)(Ω)dΩ; (5.19b)

D �J(`+1)+Mφ(`+1) =Wdφ(`)+Fdq: (5.19c)

L, Wt andFt are the matrices result from evaluating the integrals in equation (5.11a) and

M, Wd and Fd result from evaluating the integrals in equation (5.11c).D is a discrete

divergence operator in matrix form. Here,ψ, φ andq represent vectors of discrete scalar

values andJ is a vector of discrete vector values. Now, we rearrange equation (5.19c) to

obtain:

φ(`+1) =Wdφ(`)+Fdq�D �J(`+1):

We use equation (5.19b) to arrive at:

φ(`+1) =Wdφ(`)+Fdq�D �2
Z

2π

Ωψ(`+1)dΩ:

Equation (5.19a) can be solved forψ(`+1) to obtain:

φ(`+1) =
�
Wd�D �2

Z

2π

ΩL�1Wt dΩ
�

φ(`)+
�

Fdq�D �2
Z

2π

ΩL�1WtqdΩ
�
:
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If we identify

A= I �Wd+D �2
Z

2π

ΩL�1Wt dΩ;

and

b= Fdq�D �2
Z

2π

ΩL�1WtqdΩ;

then we can write the source iteration system in the following form:

φ(`+1) = (I �A)φ(`)+b: (5.20)

This is simply the stationary Richardson method applied to the odd-parity within-group

problem. To evaluate the action of A on a vector, we simply evaluate equations (5.19) with

the fixed source set to zero. Obviously, more efficient iterative methods such as CG can be

applied to equation (5.20) so long as the inner product shown in equation (5.1) is used. We

have implemented CG and DSA preconditioned CG iteration for the slab geometry odd-

parity system, and present numerical results in Chapter VI. These algorithms are described

in numerous numerical methods books [69, 54, 70].

D. SAAF DSA

The SAAF system differs from the even- and odd-parity systems in that its DSA scheme

will consist of two correction systems that are coupled on the problem boundary. This is

a direct consequence of the fact that SAAF involves explicit scattering sources from two

different finite element spaces. If we discretize the SAAF in the same way as the parity

systems, we expect the SAAF DSA systems to be identical to the even- and odd-parity

DSA systems developed abovein the problem interior. This is, in fact, the case.
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We begin with the SAAF source iteration system:

Z

∂D

(n �Ω)ψ(`+1=2)
b wi dS+

Z

D

(Ω �∇wi)
1
σt

(Ω �∇ψ(`+1=2))dV+
Z

D

σtψ(`+1=2)wi dV

=

Z

D

σsφ(`)+q
4π

wi dV+

Z

D

(Ω �∇wi)
σsφ̃(`)+ q̃

4πσt
dV; (5.21a)

Z

D

Ω �∇ψ(`+1=2)vk dV+
Z

D

σtψ̃(`+1=2)vk dV =
Z

D

σsφ̃(`)+ q̃
4π

vk dV; (5.21b)

φ(`+1) = φ(`+1=2) =
Z

4π

ψ(`+1=2)dΩ; (5.21c)

φ̃(`+1) = φ̃(`+1=2)=
Z

4π

ψ̃(`+1=2)dΩ: (5.21d)

Now, we define the corrections:

γ(`+1=2) = ψ�ψ(`+1=2); (5.22a)

Γ(`+1=2)= φ�φ(`+1=2)=
Z

4π

γ(`+1=2)dΩ; (5.22b)

Γ(`+1=2)
1 =

Z

4π

Ωγ(`+1=2)dΩ; (5.22c)

γ̃(`+1=2) = ψ̃� ψ̃(`+1=2); (5.22d)

Γ̃(`+1=2)= φ̃� φ̃(`+1=2)=
Z

4π

γ̃(`+1=2)dΩ; (5.22e)
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Γ̃(`+1=2)
1 =

Z

4π

Ωγ̃(`+1=2)dΩ: (5.22f)

We subtract equations (5.21a) and (5.21b) from the converged equations to obtain the exact

correction equations:

Z

∂D

(n �Ω)γ(`+1=2)
b wi dS+

Z

D

(Ω �∇wi)
1
σt

Ω �∇γ(`+1=2)dV

+
Z

D

σtγ(`+1=2)wi dV =
Z

D

σs

4π

h
Γ(`+1=2)+(φ(`+1=2)�φ(`))

i
wi dV

+
Z

D

(Ω �∇wi)
σs

4πσt

h
Γ̃(`+1=2)+(φ̃(`+1=2)� φ̃(`))

i
dV; (5.23a)

Z

D

Ω �∇γ(`+1=2)vk dV+
Z

D

σt γ̃(`+1=2)vk dV

=
Z

D

σs

4π

h
Γ̃(`+1=2)+(φ̃(`+1=2)� φ̃(`))

i
vk dV; (5.23b)

where

γ(`+1=2)
b =

8>><
>>:

0 for n �Ω < 0

γ(`+1=2) for n �Ω > 0:

(5.23c)

Assuming linearly anisotropic corrections, we take the zeroth moment of equation (5.23a)

to obtain an equation forΓ(`+1=2):

Z

∂D

(
1
4

Γ(`+1=2)+
1
2

n �Γ(`+1=2)
1 )wi dS+

Z

D

1
3σt

(∇wi) � (∇Γ(`+1=2))dV

+

Z

D

σaΓ(`+1=2)wi dV =

Z

D

σs(φ(`+1=2)�φ(`))wi dV: (5.24)

With the exception of the boundary integral ofΓ(`+1=2)
1 , this is an independent equation for

theΓ(`+1=2) corrections. In practice, we find that we can, in fact, neglectΓ(`+1=2)
1 without
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significantly affecting the overall performance.

Now, we move on to thẽΓ(`+1=2) corrections. First, we insert

γ̃(`+1=2) =
1

4πσt

h
σsΓ(`+1=2)+σs(φ(`+1=2)�φ(`))

i
� 1

σt
(Ω �∇γ(`+1=2));

which is exact, into equation (5.23a) then take theΩ moment to obtain:

Z

∂D

h1
6

nΓ(`+1=2)+
3π
4

Z

n�Ω>0

(n �Ω)ΩΩdΩ �Γ(`+1=2)
1

i
wi dS�

Z

D

1
3

Γ̃(`+1=2)∇wi dV

+
Z

D

σtΓ
(`+1=2)
1 wi dV = 0; (5.25)

Finally, we take the zeroth moment of equation (5.23b) to obtain:

Z

D

∇ � Γ(`+1=2)
1 vk dV +

Z

D

σaΓ̃(`+1=2)vk dV =

Z

D

σs(φ̃(`+1=2) � φ̃(`))vk dV: (5.26)

Thus, the SAAF DSA system is:

Z

∂D

(n �Ω)ψ(`+1=2)
b wi dS+

Z

D

(Ω �∇wi)
1
σt

Ω �∇ψ(`+1=2)dV+
Z

D

σtψ(`+1=2)wi dV

=
Z

D

σsφ(`)+q
4π

wi dV+
Z

D

(Ω �∇wi)
σsφ̃(`)+ q̃

4πσt
dV; (5.27a)

Z

D

Ω �∇ψ(`+1=2)vk dV+
Z

D

σtψ̃(`+1=2)vk dV =
Z

D

σsφ̃(`)+ q̃
4π

vk dV; (5.27b)

φ(`+1=2) =

Z

4π

ψ(`+1=2)dΩ; (5.27c)

φ̃(`+1=2) =
Z

4π

ψ̃(`+1=2)dΩ; (5.27d)
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Z

∂D

(
1
4

Γ(`+1=2)+
1
2

n �Γ(`+1=2)
1 )wi dS+

Z

D

1
3σt

(∇wi) � (∇Γ(`+1=2))dV

+

Z

D

σaΓ(`+1=2)wi dV =

Z

D

σs(φ(`+1=2)�φ(`))wi dV; (5.27e)

Z

∂D

h1
6

nΓ(`+1=2)+
3π
4

Z

n�Ω>0

(n �Ω)ΩΩdΩ �Γ(`+1=2)
1

i
wi dS�

Z

D

1
3

Γ̃(`+1=2)∇wi dV

+
Z

D

σtΓ
(`+1=2)
1 wi dV = 0; (5.27f)

Z

D

∇ � Γ(`+1=2)
1 vk dV +

Z

D

σaΓ̃(`+1=2)vk dV =

Z

D

σs(φ̃(`+1=2) � φ̃(`))vk dV; (5.27g)

φ(`+1) = φ(`+1=2)+Γ(`+1=2); (5.27h)

φ̃(`+1) = φ̃(`+1=2)+ Γ̃(`+1=2): (5.27i)

We conclude by considering how to solve equations (5.27). First, we again note that

Γ(`+1=2)
1 can be ignored in equation (5.27e). This allows us to solve that equation inde-

pendently forΓ(`+1=2), which can then be used in the boundary integral of equation (5.27f).

In general, equations (5.27f) and (5.27g) are difficult to collapse into a single diffusion

equation.

Again, we perform a slab geometry Fourier analysis. In this case, since we have two

scattering sources, we have two eigenvalue spectra to consider. The lumped, slab geometry
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SAAF DSA system for the model problem is:

�µ2
�ψ(`+1=2)

j+3=2 �ψ(`+1=2)
j+1=2

∆x2 �
ψ(`+1=2)

j+1=2 �ψ(`+1=2)
j�1=2

∆x2

�
+ψ(`+1=2)

j+1=2

=
c
2

φ(`)
j+1=2�

µc
2∆x

(φ̃(`)
j+1� φ̃(`)

j ); (5.28a)

φ(`+1=2)
j+1=2 =

1Z

�1

ψ(`+1=2)
j+1=2 dµ; (5.28b)

1Z

�1

µ
∆x

(ψ(`+1=2)
j+1=2 �ψ(`+1=2)

j�1=2 )dµ+ φ̃(`+1=2)
j =

c
2

φ̃(`)
j ; (5.28c)

φ̃(`+1=2)
j =

1Z

�1

ψ̃(`+1=2)
j dµ; (5.28d)

� 1
3

�Γ(`+1=2)
j+3=2 �Γ(`+1=2)

j+1=2

∆x2 �
Γ(`+1=2)

j+1=2 �Γ(`+1=2)
j�1=2

∆x2

�
+(1�c)Γ(`+1=2)

j+1=2

= c(φ(`+1=2)
j+1=2 �φ(`)

j+1=2); (5.28e)

� 1
3

� Γ̃(`+1=2)
j+1 � Γ̃(`+1=2)

j

∆x2 �
Γ̃(`+1=2)

j � Γ̃(`+1=2)
j�1

∆x2

�
+(1�c)Γ̃(`+1=2)

j

= c(φ̃(`+1=2)
j � φ̃(`)

j ); (5.28f)

and, finally,

φ(`+1)
j+1=2 = φ(`+1=2)

j+1=2 +Γ(`+1=2)
j+1=2 ; (5.28g)

φ̃(`+1)
j = φ̃(`+1=2)

j + Γ̃(`+1=2)
j : (5.28h)
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We propose the following ansatz:

ψ(`+1=2)
j+1=2 = ω`a(µ)eıλxj+1=2; (5.29a)

φ(`)
j+1=2 = ω`Aeıλxj+1=2; (5.29b)

ψ̃(`+1=2)
j = ω`ã(µ)eıλxj ; (5.29c)

φ̃(`)
j = ω`Ãeıλxj ; (5.29d)

Γ(`+1=2)
j+1=2 = ω`Beıλxj+1=2; (5.29e)

Γ̃(`+1=2)
j = ω`B̃eıλxj : (5.29f)

After inserting the ansatz into equations (5.28), we find that:

a(µ) =
c(A� ıµΛÃ)
2(1+µ2Λ2)

; (5.30a)

and

ã(µ) =
c(Ã� ıµΛA)
2(1+µ2Λ2)

: (5.30b)

The eigenvalues for both sets of unknowns are given by the now familiar relation:

ω(λ) =
c
Λ

arctan(Λ)+
c2

Λ arctan(Λ)�c

(1�c)+ 1
3Λ2

: (5.30c)

The spectral radius is again bounded by 0.2247:

ρSAAF
dsa = sup

λ
jω(λ)j � 0:2247c: (5.30d)

We therefore expect the SAAF DSA scheme to be very effective.
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E. CP DSA

Now we consider the mixed finite element discretization of the coupled even- and odd-

parity system. We begin by writing the source iteration form of the equations:

Z

∂D

jn �Ωj(g�(`+1=2)�Ω f�) �w�
i dS�

Z

D

ψ+(`+1=2)∇ �Ω(Ω �w�
i )dV

+
Z

D

σtg�(`+1=2) �w�
i dV = 0; (5.31a)

Z

D

(∇ �g�(`+1=2))v+k dV+
Z

D

σtψ+(`+1=2)v+k dV =
Z

D

σsφ+(`)+q+

4π
v+k dV; (5.31b)

φ+(`+1) = φ+(`+1=2) = 2
Z

2π

ψ+(`+1=2)dΩ: (5.31c)

We define the corrections:

γ+(`+1=2) = ψ+�ψ+(`+1=2); (5.32a)

Γ+(`+1=2) = φ+�φ+(`+1=2)= 2
Z

2π

γ+(`+1=2)dΩ; (5.32b)

h�(`+1=2) = g��g�(`+1=2); (5.32c)

H�(`+1=2)
1 = 2

Z

2π

h�(`+1=2)dΩ: (5.32d)

If we assume the angular corrections are linearly anisotropic, we have:

γ+(`+1=2) =
1

4π
Γ+(`+1=2); (5.33a)
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and

h�(`+1=2) =
3

4π
ΩΩ �H�(`+1=2)

1 : (5.33b)

Now, we write the exact correction equations:

Z

∂D

jn �Ωjh�(`+1=2) �w�
i dS�

Z

D

γ+(`+1=2)∇ �Ω(Ω �w�
i )dV

+
Z

D

σth�(`+1=2) �w�
i dV = 0; (5.34a)

Z

D

∇ �h�(`+1=2)v+k dV+
Z

D

σtγ+(`+1=2)v+k dV

=
Z

D

σs

4π

h
Γ+(`+1=2)+(φ+(`+1=2)�φ+(`))

i
v+k dV: (5.34b)

Taking the zeroth moment of both equations, we arrive at the CP DSA iteration system:

Z

∂D

jn �Ωj(g�(`+1=2)�Ω f�) �w�
i dS�

Z

D

ψ+(`+1=2)∇ �Ω(Ω �w�
i )dV

+
Z

D

σtg�(`+1=2) �w�
i dV = 0; (5.35a)

Z

D

∇ �g�(`+1=2)v+k dV+
Z

D

σtψ+(`+1=2)v+k dV =
Z

D

σsφ+(`)+q+

4π
v+k dV; (5.35b)

φ+(`+1=2) = 2
Z

2π

ψ+(`+1=2)dΩ; (5.35c)
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Z

∂D

� 3
2π

Z

2π

jn �ΩjΩΩdΩ �H�(`+1=2)
1

�
�w�

i dS�
Z

D

1
3

Γ+(`+1=2)∇ �w�
i dV

+

Z

D

σtH
�(`+1=2)
1 �w�

i dV = 0; (5.35d)

Z

D

∇ �H�(`+1=2)
1 v+k dV+

Z

D

σaΓ+(`+1=2)v+k dV

=
Z

D

σs(φ+(`+1=2)�φ+(`))v+k dV; (5.35e)

φ+(`+1) = φ+(`+1=2)+Γ+(`+1=2): (5.35f)

In slab geometry with mass matrix lumping and linear elements, this system is alge-

braically equivalent to the lumped CFEM odd-parity DSA system. Therefore, the results

of the slab geometry Fourier analysis apply directly. That is, the spectral radius is bounded

by 0.2247.

In general, this system is difficult to reduce to a single diffusion equation. However,

its form is identical to the original coupled parity transport system, thus the method used to

solve for the angular flux can also be applied to this diffusion system.

F. AFCD DSA

We now consider the MFEM angular flux/angular current density equations. The source

iteration system is:

Z

∂D

(n �Ω)g(`+1=2)
b �wi dS�

Z

D

ψ(`+1=2)∇ �Ω(Ω �wi)dV+

Z

D

σtg(`+1=2) �wi dV

=
Z

D

σsφ(`)+q
4π

(Ω �wi)dV; (5.36a)
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Z

D

∇ �g(`+1=2)vk dV+
Z

D

σtψ(`+1=2)vk dV =
Z

D

σsφ(`)+q
4π

vk dV; (5.36b)

φ(`+1) = φ(`+1=2)=
Z

4π

ψ(`+1=2)dΩ: (5.36c)

We define the following additive corrections:

γ(`+1=2) = ψ�ψ(`+1=2); (5.37a)

Γ(`+1=2)= φ�φ(`+1=2)=
Z

4π

γ(`+1=2)dΩ; (5.37b)

Γ(`+1=2)
1 =

Z

4π

Ωγ(`+1=2)dΩ; (5.37c)

h(`+1=2)= g�g(`+1=2); (5.37d)

H(`+1=2)
1 =

Z

4π

h(`+1=2)dΩ: (5.37e)

If we assume the angular corrections are linearly anisotropic, we have:

γ(`+1=2) =
1

4π
Γ(`+1=2)+

3
4π

Ω �Γ(`+1=2)
1 ; (5.38a)

and

h(`+1=2)= Ω(
1

4π
H +

3
4π

Ω �H(`+1=2)
1 ): (5.38b)

The termH(`+1=2) in equation (5.38b) corresponds to a scalar correction to an angular flux.

Recall thatg is defined as the produce of an angular flux and the direction vector. The only

termsH(`+1=2) will affect are the boundary integrals, in which caseΓ(`+1=2) can be used to
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approximate it.

The exact correction equations are, then:

Z

∂D

(n �Ω)h(`+1=2)
b �wi dS�

Z

D

γ(`+1=2)∇ �Ω(Ω �wi)dV+

Z

D

σth(`+1=2) �wi dV

=
Z

D

(Ω �wi)
σs

4π

h
Γ(`+1=2)+(φ(`+1=2)�φ(`))

i
dV; (5.39a)

Z

D

∇ �h(`+1=2)vk dV+
Z

D

σtγ(`+1=2)vk dV

=
Z

D

σs

4π

h
Γ(`+1=2)+(φ(`+1=2)�φ(`))

i
vk dV; (5.39b)

where

h(`+1=2)
b =

8>><
>>:

0 for n �Ω < 0

h(`+1=2) for n �Ω > 0:

(5.39c)

We take the zeroth moment of equations (5.39a) and (5.39b) to arrive at the AFCD DSA

system:

Z

∂D

(n �Ω)g(`+1=2)
b �wi dS�

Z

D

ψ(`+1=2)∇ �Ω(Ω �wi)dV+
Z

D

σtg(`+1=2) �wi dV

=
Z

D

σsφ(`)+q
4π

(Ω �wi)dV; (5.40a)

Z

D

∇ �g(`+1=2)vk dV+
Z

D

σtψ(`+1=2)vk dV =
Z

D

σsφ(`)+q
4π

vk dV; (5.40b)

φ(`+1=2) =
Z

4π

ψ(`+1=2)dΩ; (5.40c)
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Z

∂D

h1
6

nH(`+1=2)+
3π
4

Z

n�Ω>0

(n �Ω)ΩΩdΩ �H(`+1=2)
1

i
�wi dS�

Z

D

1
3

Γ(`+1=2)(∇ �wi)dV

+

Z

D

σtH
(`+1=2)
1 �wi dV = 0; (5.40d)

Z

D

∇ �H(`+1=2)
1 vk dV+

Z

D

σaΓ(`+1=2)vk dV =
Z

D

σs(φ(`+1=2)�φ(`))vk dV; (5.40e)

φ(`+1) = φ(`+1=2)+Γ(`+1=2): (5.40f)

We again mention that, in practice, in equations (5.40d) and (5.40e), we replaceH(`+1=2)

with Γ(`+1=2). We have found that this approximation does not adversely affect the con-

vergence properties of this scheme in slab geometry. Equations (5.40d) and (5.40e) can be

easily combined into a single diffusion equation if mass matrix lumping is applied.

In slab geometry with lumped linear elements, we have for the model problem:

�µ2
�g(`+1=2)

j+3=2 �g(`+1=2)
j+1=2

∆x2 �
g(`+1=2)

j+1=2 �g(`+1=2)
j�1=2

∆x2

�
+g(`+1=2)

j+1=2

=
µc
4
(φ(`)

j+1+φ(`)
j )� µ2c

2∆x
(φ(`)

j+1�φ(`)
j ); (5.41a)

1
∆x

(g(`+1=2)
j+1=2 �g(`+1=2)

j�1=2 )+ψ(`+1=2)
j =

c
2

φ(`)
j ; (5.41b)

� 1
3

�Γ(`+1=2)
j+1 �Γ(`+1=2)

j

∆x2 �
Γ(`+1=2)

j �Γ(`+1=2)
j�1

∆x2

�
+(1�c)Γ(`+1=2)

j

= c(φ(`+1=2)
j �φ(`)

j ); (5.41c)

and, finally,

φ(`+1)
j = φ(`+1=2)

j +Γ(`+1=2)
j : (5.41d)
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We propose the following ansatz:

g(`+1=2)
j+1=2 = ω`b(µ)eıλxj+1=2; (5.42a)

ψ(`+1=2)
j = ω`a(µ)eıλxj ; (5.42b)

φ(`)
j = ω`Aeıλxj ; (5.42c)

Γ(`+1=2)
j = ω`Beıλxj : (5.42d)

After inserting the ansatz into equations (5.41), we find that:

a(µ) =
cA[1� ıµΛcos(λ∆x=2)]

2(1+µ2Λ2)
; (5.43a)

and,

ω(λ) =
c
Λ

arctan(Λ)+
c2

Λ arctan(Λ)�c

(1�c)+ 1
3Λ2

: (5.43b)

The spectral radius is:

ρAFCD
dsa = sup

λ
jω(λ)j � 0:2247c: (5.43c)

G. Summary

The diffusion synthetic acceleration discretizations developed in this chapter are identi-

cal to the corresponding diffusion limit discretizations, except for certain boundary terms.

Unlike many DSA schemes for first order transport discretizations, the diffusion discretiza-

tions developed here are all relatively simple to solve when compared to solving the un-

derlying transport problem. Our simple Fourier analyses indicate that these DSA schemes

will rapidly attenuate all of the error modes, at least in slab geometry.
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We show in Chapter VI that this is indeed the case. The slab geometry implementa-

tions of our DSA schemes exhibit exactly the performance that we have described in this

chapter. The XY geometry implementations display behavior typical of consistent multidi-

mensional DSA. That is, the observed spectral radii are bounded by 0.5 in all cases.
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CHAPTER VI

NUMERICAL RESULTS

In the previous chapters, we developed and analyzed several discretizations of the transport

equation in the thick diffusive limit. Further, we proposed and implemented DSA schemes

for each of the methods. In this chapter, we present numerical results that allow us to assess

our analyses and predictions.

We begin by presenting slab geometry results for all of the discretizations we have

developed. First, we consider problems with thick diffusive regions. We then study the

convergence behavior as the spatial mesh is refined for a model problem with an analytic

solution. Finally, we discuss the performance of the DSA schemes we implemented. Unless

otherwise noted, all slab geometry calculations useS16 Gauss-Legendre quadrature and

mass matrix lumping.

The functional form of the slab geometry scalar fluxes is linear continuous for the

even-parity and the SAAF cell edge solutions. For the odd-parity, SAAF cell centers and

AFCD, the scalar fluxes are piecewise constant. The hybrid parity scalar flux is linear

discontinuous.

We then consider several XY geometry problems. We restrict our results to the even-

and odd-parity equations discretized with mass lumped linear continuous finite elements.

We present results for a suite of thick diffusive problems. We then study the global conver-

gence behavior of the parity systems as the spatial mesh is refined and evaluate performance

of our DSA preconditioners. Finally, we examine several relatively difficult problems that

highlight potential problem areas in standard finite element discretizations of parity forms

of the transport equation. Unless otherwise noted, all of the XY geometry numerical results

use the discrete ordinates angular approximation withS16 level symmetric quadrature.

Again, the form of the even-parity flux is linear continuous and the odd-parity flux is
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piecewise constant on triangles. Thus, the hybrid-parity scalar flux is linear discontinuous.

A. Accuracy for Thick Diffusive Problems

1. Slab Geometry

A general slab geometry spatial grid is shown in Fig. 4. All of our results use uniform mesh

spacing in each material region.

a. Theε Problem

The first slab geometry problem we consider is the well-knownε problem [71]. In this

problem, the cross sections and fixed source are scaled in the same way as they are in our

diffusion limit analyses. That is, we setσt ! σt=ε, σa ! εσa, andq! εq, with σt = σa =

q= 1. As the scaling parameter,ε, tends to zero, the correct transport solution approaches

the diffusion solution. For each method, we plot the diffusion solution along with our

transport results forε = 0:1 and 0:001 for a 1cm thick slab with vacuum boundaries.

As our analyses predicted, each method we consider performs well in this problem.

As ε approaches zero, the transport solutions approach the diffusion solution. First, we

plot the even- and odd-parity results in Fig. 9 and 10. The SAAF results, for both the cell

edge and cell centered unknowns are shown in Fig. 11 and 12. We note that for values of

ε smaller than 0:001, none of the solutions change noticeably. The AFCD results are

interesting. Recall that we showed that the AFCD boundary condition will differ from the

odd-parity boundary condition in that it will extrapolate to a half cell beyond the physical

boundary. This can be observed in Fig. 13, where the AFCD solution is clearly too high.

If we refine the mesh near the boundary, the AFCD solution falls to the correct diffusion

solution.
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Fig. 9. EPε problem.
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Fig. 10. OPε problem.
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Fig. 12. SAAF(cells)ε problem.
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Fig. 13. AFCDε problem.

b. External Boundaries

Now, we consider a 1cm thick, source free,c=1 slab withσt =1000. We drive the problem

with incident angular fluxes on the left side of the problem and use a very fine mesh (10000

cells )diamond difference (DD) calculation as the reference solution.

The results for a nearly normal incident boundary angular flux are shown in Fig. 14.

In our analysis, we predicted that the EP and SAAF(edges) should satisfy a Marshak (2µ)

boundary condition, while the OP, SAAF(cells) and AFCD satisfy a 3µ2 boundary condi-

tion for thick diffusive problems. Thus, we expect the EP and SAAF(edges) to be lower

than the correct solution on the boundary since 2µ< µ+ 3
2µ2 for µ near unity. The other

methods should be higher, since 3µ2 > µ+ 3
2µ2 for µ near unity.

Nearly grazing boundary condition results are plotted in Fig. 15. Here, withµ small,

we expect the EP and SAAF(edges) solution to be higher than the correct solution, while the

other methods will be lower. Again, this is observed in the results. For both problems, the
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Fig. 16. Modified SAAF normal incident problem.

hybrid-parity results are very accurate, as we predicted. In the case of an isotropic incoming

angular flux, all methods produce results that agree well with the reference solution. We

do not display this simple result.

In the development of the SAAF system, we were able to show that the only differ-

ence between it and the average of the even- and odd-parity system was in the bound-

ary conditions. If we replace the standard incoming boundary condition,ψb = fl , with

ψb = 2 fl �ψ1=2 then we expect the SAAF results to be identical to the parity results. This

is, in fact, the case, as we show in Fig. 16

c. Internal Interfaces

Now, we consider a model internal interface problem. This problem consists of a two

region slab. The first region (0< x < 1:0) contains a source free pure absorber one mean

free path thick. The second region (1:0< x< 2:0) contains a source free pure scatterer one
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thousand mean free paths thick. The problem is driven by an incident angular flux atx= 0.

In Chapter II, we described the angular flux in the transport region with equations (2.41)

and (2.42). If the transport region consists of a pure absorber, we can explicitly calculate

the solution in that region. First, we attenuate the external boundary condition from the left

boundary to the interface. Then we use the albedo condition, equation (2.42), to determine

the angular flux emerging from the diffusive region and attenuate that from the interface to

the left boundary. We note that we use the discrete ordinates method to treat the angle vari-

able, though that is by no means necessary. We simply want the spatially analytic results

to correspond as closely as possible to the numerical results.

In Chapter III, we determined that the even- and odd-parity systemseach satisfied

albedo conditions at the interface. These interface albedo conditions, equations (3.72b)

and (3.80b), significantly differ from the exact condition. Their average results in a 2µ

weighted isotropic return which we think may be an acceptable approximation to the exact

condition.

Fig. 17 shows the exact analytic scalar flux in the transport region along with the

analytic even- and odd-parity results calculated with equations (3.72b) and (3.80b). We

have also plotted even- and odd-parity numerical results for this problem. The numerical

results in the transport region agree quite well with the analytic predictions, and the hybrid-

parity solution is very accurate for this problem. As we showed in Fig. 8, the hybrid-

parity albedo differs from the exact mainly at small values ofµ, which influence the overall

solution the least.

Now, we consider the model interface problem driven by a left boundary angular flux

in the most normal direction. We use 10 cells in the transport region and 10 cells in the

diffusive region. The reference solution displays an abrupt jump in magnitude (a boundary

layer) at the interface as shown in Fig. 18. Assuming that the transport region is zoned

finely enough to resolve the angular flux forµ> 0, we expect the even-parity solution to
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satisfy a 2µ weighted boundary condition on the interface, and the odd-parity to satisfy a

3µ2 condition. Thus, the even-parity solution should be lower than the exact forµ' 1, and

the odd-parity high. That is exactly what we observe. Their average, as predicted, is very

accurate in both the transport and diffusive region. Recall that we can formally relate the

SAAF solutions to the parity solutions at the interface. That is, we expect the SAAF cell

edge scalar fluxes to be nearly identical to the even-parity values, and the SAAF cell center

fluxes to match the odd-parity values. This is very nearly the case and we postulate that the

observed differences are a result of the way we treat the external boundary condition. While

we were not able to formally predict the behavior of the AFCD discretization at internal

interfaces, we suggested that it would be similar in character to the odd-parity solution, as

it indeed appears to be. It once again extrapolates the 3µ2 boundary condition a half cell to

the left of the physical interface.

In Fig. 19 we consider the model problem driven by a nearly grazing incoming angular

flux. In this case, we use 100 zones in the transport region and 10 in the diffusive. The

larger number of zones in the transport region is required to account for the exponential

attenuation of the solution over a longer path length (the distance that a beam must travel to

reach the interface is 1=µ, thus for smallµ more cells are required to resolve the solution).

This problem has a strong boundary layer in which the reference solution changes by an

order of magnitude. Despite this, the hybrid-parity solution is extremely accurate.

Finally, we plot the SAAF results obtained with theψb = 2 fl �ψ1=2 boundary con-

dition in Fig. 20. Here, we expect the SAAF edge scalar fluxes to be identical to the

even-parity fluxes, and the SAAF cell fluxes to correspond to the odd-parity fluxes. This

is precisely what we observe. Finally, we note that though the standard SAAF boundary

condition results in cell centered scalar fluxes that are correct on the external boundaries

of thick diffusive problems, the cell centered flux is not accurate at internal interfaces. Us-

ing the modified boundary condition, the average of the cell edge and cell centered SAAF
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Fig. 19. Grazing incident interface problem (log scale).

scalar fluxes is extremely accurate at both external boundaries and internal interfaces.

d. Truncation Error Problems

Miller [3] has shown that the slab geometry even-parity equation discretized with linear

continuous finite elements is second order accurate. While we have not performed trunca-

tion error analyses, we expect all of the methods to display second order convergence.

The first problem we consider is a four region slab with vacuum boundary conditions

originally described by Alcouffe [72]. We display the problem layout in Fig. 21. The

region thicknesses are measured in mean free paths and the relative number of cells per

region is shown in parenthesis. The exact solution to this problem varies by nearly eight

orders of magnitude. A fine mesh (9600 cells) diamond difference calculation is used as

the reference solution and is displayed in Fig. 22. The solution is converged to a maximum

relative pointwise error of 10�7. In Fig. 23 we plot the absolute value of the difference
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between the reference and calculated total absorption rate as a function of the number of

uniform spatial cells. There are several things to note. First, all the methods display second

order convergence. Second, the diamond difference edge angular fluxes were negative

and oscillatory for coarse meshes, though the cell average fluxes were acceptable. The

hybrid-parity solution was far more accurate than the individual parity solutions and was

comparable to the DD solution on fine meshes. Finally, recall that for vacuum boundaries

the SAAF edge fluxes correspond the even-parity scalar fluxes and the SAAF cell centered

fluxes correspond to the odd-parity scalar fluxes.

Next, we compute the exiting partial current from a 50 mean free path slab with an

isotropic boundary condition on one face. We do this as a function of scattering ratio and

cell thickness and present the ratio of the calculated results to a fine mesh (50,000 cells)

DD reference solution in Tables I through III. Note that the linear discontinuous (LD) re-

sults are from reference [73]. For thin cells, LD is third order accurate and exhibits the
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Table I. Exiting partial current as a function ofc for σt∆x= 1:0.

c EP OP SAAF AFCD DD LD

0.0 8.2E+00 8.2E+00 8.2E+00 7.7E+00 5.4E+05 5.1E-01

0.1 7.9E+00 7.9E+00 7.9E+00 7.6E+00 1.4E+05 5.1E-01

0.3 7.1E+00 6.9E+00 7.0E+00 6.9E+00 4.3E+03 5.4E-01

0.5 5.5E+00 5.2E+00 5.3E+00 5.3E+00 2.0E+01 6.1E-01

0.7 3.1E+00 2.9E+00 3.0E+00 3.1E+00 7.2E-02 7.4E-01

0.9 1.4E+00 1.3E+00 1.3E+00 1.5E+00 5.3E-01 9.4E-01

0.99 1.0E+00 1.0E+00 1.0E+00 1.2E+00 9.8E-01 1.0E+00

0.999 1.0E+00 1.0E+00 1.0E+00 1.3E+00 1.0E+00 1.0E+00
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Table II. Exiting partial current as a function ofc for σt∆x= 2:5.

c EP OP SAAF AFCD DD LD

0.0 6.8E+03 6.8E+03 6.8E+03 5.5E+03 7.6E+19 1.6E+01

0.1 6.2E+03 6.0E+03 6.1E+03 5.3E+03 3.8E+19 1.0E+01

0.3 4.2E+03 3.8E+03 4.0E+03 4.0E+03 5.1E+18 2.6E+00

0.5 1.6E+03 1.4E+03 1.5E+03 1.6E+03 1.2E+17 1.3E-01

0.7 1.9E+02 1.5E+02 1.7E+02 1.9E+02 5.4E+13 1.0E-02

0.9 5.5E+00 4.4E+00 4.9E+00 6.1E+00 3.2E+06 4.2E-01

0.99 1.1E+00 1.0E+00 1.1E+00 1.8E+00 8.8E-01 9.8E-01

0.999 1.0E+00 1.0E+00 1.0E+00 2.0E+00 1.0E+00 1.0E+00

Table III. Exiting partial current as a function ofc for σt∆x= 5:0.

c EP OP SAAF AFCD DD LD

0.0 7.7E+07 7.7E+07 7.7E+07 5.2E+07 7.5E+21 9.E+12

0.1 6.5E+07 6.2E+07 6.3E+07 5.2E+07 4.1E+21 6.E+12

0.3 3.4E+07 2.9E+07 3.1E+07 3.4E+07 6.5E+20 1.E+12

0.5 6.8E+06 5.1E+06 6.0E+06 7.2E+06 1.8E+19 3.E+10

0.7 1.6E+05 1.0E+05 1.3E+05 1.6E+05 9.8E+15 2.E+07

0.9 1.2E+02 6.9E+01 9.3E+01 1.2E+02 7.0E+08 1.2E+00

0.99 1.4E+00 1.2E+00 1.3E+00 2.9E+00 3.0E+00 8.7E-01

0.999 1.0E+00 1.0E+00 1.0E+00 3.3E+00 9.8E-01 1.0E+00
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best overall performance. Forc near zero, LD is superior to the parity solutions, but for

diffusive problems the parity solutions are comparable to LD. With thick cells, all of the

methods perform poorly for small values ofc. However, forc near one they are quite ac-

curate with the exception of the AFCD results. This is because the AFCD vector unknown

only converges with first order accuracy. Diamond differencing performs poorly in these

problems because, even on the finest mesh, the cell thickness is greater than 2µmin=σt so

that oscillations can result.

Finally, consider a slab of thicknessL with vacuum boundaries, fixed cross sections,

isotropic scattering, and isotropic sources. In slab geometryS2 problems are equivalent to

P1 problems with Mark boundary conditions. Thus, if we run aS2 calculation for such a

problem, we can completely isolate the error associated with the spatial discretization. The

scalar flux in such a problem is given by:

φ(x) =
q

σa

�
1� e

p
3σaσtx+e�

p
3σaσtx

(1+
p

σa=σt)e
p

3σaσtL=2+(1�pσa=σt)e�
p

3σaσtL=2

�
:

In Fig. 24 we plot the absolute value of the difference between the calculated total absorp-

tion rate and the exact value for a 1cm thick slab withσt = 2;σa= 1 andq= 1. All methods

exhibit second order convergence as we expected. We note that both the hybrid-parity and

SAAF edge results are superior to the DD result.

Finally, in Fig. 25, we study the effect that mass matrix lumping has on accuracy. We

expect that there will be some degradation in accuracy, though the order of convergence

should remain the same. This is observed in the plot. It is interesting to note that the

hybrid-parity accuracy is insensitive to mass matrix lumping despite the fact that both the

even- and odd-parity errors change when lumping is used. We observe this behavior in

several other more complex tests of the global error.
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Fig. 24. Absorption rate error for the analytic problem.
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Fig. 26. Regular XY geometry mesh.

2. XY Geometry

In this section, we will use three different spatial grids. The first is the regular triangular

grid shown in Fig. 26. The origin is in the lower left corner, and various incident angular

fluxes are applied to the middle six boundary edges on the bottom face.

We will also generate results for several test problems on two irregular grids. The first

belongs to a family of meshes known as Z-meshes [74] and is depicted in Fig. 27. The

second grid is simply a randomly distorted version of the regular grid. We refer to it as

the random grid and display it in Fig. 28. Note that the double border around Fig. 27 and

28 is an artifact of the mesh generation program and that the underlying triangular mesh is

obtained by inserting edges from the vertices to the geometric center of each quadrilateral.
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Fig. 27. XY geometry Z-mesh. Fig. 28. XY geometry random mesh.
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In this section, we will use the bilinear discontinuous finite element discretization

(BLD) on a square grid as a reference for comparison. Its behavior is well understood

for thick diffusive problems. On a problem boundary, the magnitude of the BLD flux is

given by a Marshak weighting of the incoming angular flux, just as in the even-parity case.

However, over the first cell, the flux falls toµ+ 3
2µ2 interior magnitude. The BLD method

is also known to exhibit second order convergence on regular grids.

a. Theε Problem

We first consider theε problem on a regular, 400 element mesh withS4 quadrature. Our

analysis indicates that the even- and odd-parity transport solutions should approach a diffu-

sion solution asε tends to zero. Fig. 29 and 30 show the value of the even- and odd-parity

scalar fluxes along the diagonal extending from the lower left corner to the upper right cor-

ner. The solutions are symmetric and smooth in both cases, and behave just as we expected.

As in the slab geometry case, for values ofε less than 0.001, the even- and odd-parity so-

lutions do not change. We note that many methods yield solutions that tend to zero asε

approaches zero [71].

b. External Boundaries

We now turn to purely scattering problems driven by boundary conditions. Here, we use the

mesh shown in Fig. 26. We consider a 1cm by 1cm square withσt = σs = 1000, no source

andS16 quadrature. In our first problem, we drive the problem with an isotropic incoming

angular flux. Here, we expect both the even- and odd-parity solutions to be accurate. In

Fig. 31 we plot a square mesh bilinear discontinuous (BLD) solution along with even- and

odd-parity solutions along the centerline of the problem. The solutions behave as expected;

all are approximately the same and reasonably accurate.

Now, we drive the same problem described above with an angular flux in the most
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Fig. 29. XY EPε problem.
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Fig. 30. XY OPε problem.
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Fig. 31. XY isotropic incident problem.

nearly normal incident angles. That is, the two angles with the smallestjµj and the largest

η, whereµ= Ω �ex andη = Ω �ey. We have scaled the magnitude of the incoming angular

flux so that the interior solution should be the same as in an isotropic incoming case with

a µ+ 3
2µ2 weighting. We plot BLD, even- and odd-parity results along the centerline in

Fig. 32. Our analysis predicts that the even-parity solution will be lower than the exact

and that the odd- parity solution will be higher. This can be seen in the graph. Note that

the BLD and even-parity solutions are identical on the problem boundary, and that the

hybrid-parity solution follows the BLD solution in the interior.

We now consider a boundary condition in the most nearly grazing incident angles (the

two angles with the largestjµj and the smallestη). We have again scaled the magnitude

of the incoming angular flux to produce the same interior magnitude as in the isotropic

incoming case. We plot BLD, even- and odd-parity results along the centerline in Fig. 33.

In this case, our analysis predicts that the even-parity solution will be higher than the exact
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Fig. 32. XY normal incident problem.

and that the odd-parity solution will be lower. Again, the results agree quite well with our

predictions, and the hybrid-parity solution again follows the BLD solution closely in the

problem interior. Note that the BLD solution falls from the even-parity value on the bound-

ary to the hybrid-parity value in the next cell. Clearly, given that our goal when deriving

the diffusion limit boundary condition was to extrapolate the correct interior solution to the

boundary, the hybrid-parity method is more accurate than the BLD on the boundary.

In our analysis of the odd-parity system, we noted that we obtain the 3µ2 weighting

only when the incoming angular flux is azimuthally symmetric. In order to evaluate the

effect of an asymmetric incoming angular flux, we now consider a problem identical to

the previous grazing angle problem except that instead of having an incoming angular flux

with equal magnitudes in the two most grazing angles, we put twice the original magnitude

into one (the angle pointing form left to right) direction.

Physically, in a thick diffusive problem, the azimuthal asymmetries in the boundary
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Fig. 33. XY grazing incident problem.

condition do not affect the interior solution (though they do strongly affect the boundary

layer). In the case of the odd-parity system, however, an azimuthally asymmetric angular

flux does affect the interior solution. In Figs. 34 through 37 we plot the value of the odd-

parity angular flux along constant values of the Y coordinate for both a symmetric incoming

angular flux and for an asymmetric angular flux. We see that the odd-parity solution is

very adversely affected by asymmetry in the boundary condition. Near the boundary itself

we obtain negative fluxes. In the interior, a non-physical oscillatory solution propagates

throughout the entire problem.

c. Internal Interfaces

Though our internal interface analysis was restricted to slab geometry, we do expect the

results to apply to multidimensional problems. Therefore we consider a problem where

the region from (0< Y < 0:5) contains a pure absorber withσt = σa = 1 and the region
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Fig. 34. OP asymmetric BC problem for Y=0.0.
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Fig. 35. OP asymmetric BC problem for Y=0.1.
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Fig. 36. OP asymmetric BC problem for Y=0.5.
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Fig. 37. OP asymmetric BC problem for Y=0.9.
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Fig. 38. XY internal interface problem.

from (0:5<Y < 1:0) contains a pure scatterer withσt = σs = 1000. In Fig. 38 we display

BLD, even- and odd- parity results along the centerline of the problem. In this case, we

drive the problem with a nearly normal boundary condition. Though the BLD method

cannot be considered a reference solution, we do expect it to perform well for problems of

this type. We see that, with the exception of the value on the interface, the hybrid-parity

method again mimics the BLD solution. In fact, the hybrid-parity method comes much

closer to the actual extrapolated interior diffusion solution on the interface than the BLD,

which satisfies a Marshak condition on the boundary.

d. Truncation Error Problems

First, we consider a 1cm by 1cm square with a uniform isotropic source, vacuum bound-

ary conditions andS2 quadrature. We setσt = 1:0 andσs = 0:5 then calculate the total

absorption rate error as a function of the number of elements, where we use a fine mesh
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Fig. 39. XY absorption rate error versus number of elements.

(16,384 cells) BLD calculation converged to a maximum relative pointwise error of 10�6

to determine the reference value. The results are displayed in Fig. 39. All the methods dis-

play second order convergence. Note that the hybrid-parity solution is significantly more

accurate than either the even-parity solution or the odd-parity solution alone.

Finally, we consider the four region problem shown in Fig. 40. This problem consists

of ac= 1 source region surrounded by an absorbing region, then by water. We calculate the

absorption rate in the top right region, which is a pure absorber, as a function of decreasing

the uniform mesh spacing along each axis. The results are shown in Fig. 41. We note

that all of the methods display second order convergence. However, it is obvious that

the hybrid-parity and BLD solutions are much more accurate than the individual parity

solutions. Here, we see that the odd-parity solution approaches the correct solution from

below, while the even-parity solution approaches from above. This is a characteristic of the

parity systems.



146

σ=1.0

c=1.0
S=1.0

σ=1.0

c=0.8
S=0.0

σ=1.0

c=1.0
S=0.0

σ=2.0

c=0.0
S=0.0

0.0 1.0 1.5 3.0

0.0

1.0

1.5

3.0

Fig. 40. XY four region problem configuration.

0 10 20 30 40 50
Number of Cells Along Each Axis

0.0006

0.0008

0.0010

0.0012

0.0014

A
bs

or
pt

io
n 

R
at

e

BLD
Even−Parity
Odd−Parity
Hybrid−Parity

Fig. 41. Absorption rate in top right corner.
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Fig. 42. Regular Mesh Even-Parity XY isotropic BC problem.

e. Irregular Mesh Problems

We now consider a series of more challenging problems. We hope to identify potential

problems in our discretizations by considering several non-uniform grids. The problem we

consider is the isotropic incoming boundary condition problem whose solution is shown in

Fig. 31. We use the regular mesh solutions as a reference point. Note that we are unable

to present BLD results for these problems since we do not have access to a non-orthogonal

grid BLD solver.

In Fig. 42 we plot contours of the regular grid even-parity solution for this problem.

The peak value of 6.2 occurs in the center of the bottom face and the contours begin at 6.0

and are 0.3 apart. The solution is symmetric about X=0.5, smooth and positive throughout

the problem.

Using the same contours as in the regular mesh case, we display the Z-mesh and ran-
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Fig. 43. Z-Mesh EP problem.
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Fig. 44. Random-Mesh EP problem.

dom mesh results for this problem in Figs. 43 and 44, respectively. The Z-mesh problem

clearly exhibits some skewing along the distorted grid lines, though the magnitude of the

solution remains approximately correct. The random mesh results are quite good, though

there is a small amount of asymmetry introduced. Both the Z-mesh and random mesh solu-

tion remain positive throughout the problem. In Fig. 45 we plot the regular grid odd-parity

solution for this problem. The peak value of 6.0 occurs in the center of the bottom face. The

solution is symmetric about X=0.5 positive throughout the problem. We present the Z-mesh

and random mesh results for this problem in Figs. 46 and 47, respectively. These results

require some explanation. First, we note that it is impossible to converge these problems

for c= 1, thus, we were forced to introduce a small amount of absorption. Specifically, we

setc = 0:99999, which we determined would result in an amount of absorption approxi-

mately two orders of magnitude smaller than the leakage from the problem. That is, we do

not expect this amount of absorption to measurably affect the characteristics of problem.

Despite this, we see that the solutions are neither symmetric nor positive. Though it is

difficult to see in the plots, the negative fluxes occur only in the lower left and lower right
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Fig. 45. Regular Mesh Odd-Parity XY isotropic BC problem.
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Fig. 46. Z-Mesh OP problem.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

X (cm)

Y
 (

cm
)

0.0 2.0 4.0 6.0

Scalar Flux

Fig. 47. Random-Mesh OP problem.

corners of the two problems. The Z-mesh solution is more negative fluxes and oscillatory

than the random-mesh solution. While these results at first appear disappointing, we stress

that they are not unexpected. As we discussed in Chapter III, the odd-parity equation

discretized with linear continuous finite elements violates the discrete inf-sup condition.

As a result, the matrix equation that the leading order odd-parity solution satisfies in the

thick diffusive limit is singularwhenc= 1. As we mentioned Chapter III, the odd-parity

LCFEM source matrix has a non-zero null-space, leading to the inability of the method to

yield a unique scalar flux.

In fact, it is rather surprising that we are able to obtain odd-parity results for any XY

geometry problem. In order to understand what is happening, we now consider a very

simplec= 1 XY geometry problem. Consider the mesh shown in Fig. 48. We constructed

the discrete odd-parity LCFEM matrix system for this problem and found that the null-
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space of the source operator consisted of symmetric but highly oscillatory vectors. In order

to excite these error modes, we contrived the following problem. Using the grid shown in

Fig. 48, we inserted a fixed source of 1 in the elements labeled A, and a fixed source of 0

in those labeled B. We ran the problem using source iteration and plot the scalar fluxes in

elements A and B in Fig. 49. Just as we expected, the scalar flux in these elements grows

with each iteration because the fixed source was selected to be in a space that is completely

invisible to the odd-parity CFEM operator. As was stated in Chapter III, this discretization

should be used only with great caution.

B. DSA Performance

In this section we study the performance of our DSA routines for a variety of slab and XY

problems. First, we consider a 1cm thick, c=1 slab with 10 cells, a fixed source of 0.0001

andS16 quadrature. We vary the value ofσt to change the optical thickness of the problem

and use a maximum pointwise relative error of 10�6 as the convergence criterion.

The number of iterations for each method are shown in Table IV. The final two rows

show the number of odd-parity conjugate gradient (OPCG) and odd-parity DSA precondi-
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Fig. 49. Null space error mode excitation problem.

tioned conjugate gradient (OPPCG) iterations required to converge the problem.

Our Fourier analyses indicate that all our DSA methods should have spectral radii

bounded by 0.2247 (which corresponds to less than 10 iterations for the problem under

consideration assuming an O(1) initial error). All of the results, with the exception of the

SAAF, agree well with our predictions.

Recall that in the derivation of the SAAF DSA system we were forced to make an

approximation to the boundary terms of the DSA system in order to decouple the cell edge

and cell center unknowns. In thin problems, where the boundary terms have the greatest

impact, this approximation adversely affects the performance of the SAAF DSA, though

not to a problematic degree.

The conjugate gradient results are impressive for this small problem. Using DSA to

precondition the conjugate gradient method results in only a minor decrease in iteration

count. However, we expect the number of conjugate gradient iterations to increase as the
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Table IV. Slab DSA results for a 10 cell problem.

Method σt = 100 σt = 101 σt = 102 σt = 103

EP 9 9 5 3

OP 9 8 4 3

SAAF 15 17 11 6

AFCD 8 9 7 4

OPCG 5 6 6 6

OPPCG 5 5 3 3

Table V. Slab DSA results for a 100 cell problem.

Method σt = 100 σt = 101 σt = 102 σt = 103

EP 9 9 5 4

OP 9 8 4 3

SAAF 21 17 11 6

AFCD 9 9 7 4

OPCG 12 36 51 51

OPPCG 6 6 4 3

size of the problem increases. To test this we consider the same problem discretized with

100 cells show the results in Table V.

As expected, the conjugate gradient method now requires far more iterations than

the DSA method. Though the DSA preconditioned conjugate gradient method exhibits

excellent performance in terms of iteration count, it requires more memory and floating

point operations than the standard DSA method.

Finally, in Table VI we present iteration counts for a simple XY geometry problem.

The problem consists of a regular, 400 element XY geometry mesh withc= 1, a uniform
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Table VI. XY DSA results for a 400 element problem.

Method σt = 100 σt = 101 σt = 102 σt = 103 σt = 104

EP 9 9 5 5 5

OP 22 15 7 5 5

fixed source andS16 quadrature. Again, we vary to total cross section to alter the optical

thickness of the problem.

We predicted that the spectral radii of the parity DSA schemes would be bounded by

0.5, which corresponds to approximately 20 iterations in this problem, again assuming O(1)

initial errors. Our results agree well with this prediction, though we note that the odd-parity

method is somewhat less efficient than the even-parity for optically thin problems.

In summary, the numerical results we have presented here agree well with the anal-

ysis, and we have confidence that we understand the behavior of these methods in thick

diffusive problems. Further, we have successfully implemented DSA for all of the methods

in slab geometry and for the even- and odd-parity CFEM methods in XY geometry. Fi-

nally, we have demonstrated that the use of LCFEM discretizations of the odd-parity (and

the SAAF system by virtue of its similarity to the odd-parity system) are suspect except in

very idealized (c< 1, regular grid) problems.
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CHAPTER VII

CONCLUSIONS AND RECOMMENDATIONS

A. Conclusions

In this dissertation have derived very general Cartesian coordinate finite element discretiza-

tions for several second order forms of the transport equation. We have identified the re-

lationship between finite element discretizations of the even- and odd-parity equations and

corresponding discretizations of the SAAF equation. We have demonstrated that if they

are discretized with the same finite element method, the average of the discrete even- and

odd-parity equations is the same as the discrete SAAF equation in the problem interior.

Further, if we replace the standard SAAF boundary conditionψb = f with ψb = 2 f �ψ

for incoming directions, the SAAF discretization becomes identical to the average of the

discretized even- and odd-parity equations everywhere. Throughout this work, we have

assumed very little about the weight and basis functions underlying the discretizations, in

the hope that our results can be very generally applied.

We have analyzed the finite element discretizations for thick diffusive problems and

found that for each transport discretization, the leading order solution in a thick diffusive

problem satisfies a corresponding finite element discretization of the diffusion equation.

However, the discrete boundary conditions may not be accurate. Nevertheless, this is a

powerful result. If we select a finite element method that isappropriatefor a diffusion

problem on a particular grid, then the application of that method to a second order form

of the transport equation will ensure that the leading order transport solution in a thick

diffusive problem satisfies thatappropriatefinite element discretization of the diffusion

equation. Our analysis also revealed that the average of the even- and odd-parity solutions

should be very accurate for thick diffusive problems, provided the odd-parity diffusion
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discretization is not singular.

Notably, one of the most straightforward discretizations of the odd-parity system, the

linear continuous finite element method on triangles and tetrahedra, is not an appropriate

discretization. In this case, the diffusion unknown is a cell centered quantity and that

choice of weight and basis functions corresponds to a dual mixed variational finite element

discretization that violates the discrete inf-sup condition. The SAAF system is also subject

to this problem. As we have shown, the SAAF system is identical to the average of the

even- and odd-parity systems except for boundary conditions.

Application of appropriate mixed finite element methods resolves the violation of the

discrete inf-sup condition, though at the expense of more unknowns on a given mesh and

introduction of symmetric indefinite matrices in place of the SPD matrices we enjoy for

CFEM discretizations.

We also characterized the behavior of the finite element discretizations at interfaces

between diffusive and non-diffusive regions in slab geometry. We showed that the behavior

in the diffusive region was identical to the behavior on outer boundaries. By carefully ana-

lyzing the even- and odd-parity methods in the transport region we were able to show that

the hybrid-parity solution satisfies a Marshak weighted, isotropic return albedo condition

at the interface. Though this condition is not identical to the exact albedo, it appears to be

a very good approximation.

Finally, we developed and implemented consistent DSA for each method. Our Fourier

analysis suggests that these schemes will be very successful. We note that the SAAF DSA

scheme requires scalar flux corrections in both finite element spaces in question. Our efforts

to accelerate only one (the cell centered scalar flux, for example) were not successful.

We summarize our development and analysis results in Table VII. Unless otherwise

noted, these results are for linear continuous finite elements on a triangular mesh. Recall

that we denote the lowest order Raviart-Thomas finite elements asRT0.
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Table VII. Summary of analysis results.

Method Ext./Int. BC Unknowns Satisfies Inf-Sup?

Even-Parity 2µ / 2µ 1
4NK Yes

Odd-Parity 3µ2 / 3µ2 1
4NK No

Hybrid-Parity µ+ 3
2µ2 / µ+ 3

2µ2 1
2NK No

SAAF Cells µ+ 3
2µ2 / 3µ2 NK No

SAAF Vertices 2µ / 2µ 1
2NK No

RT0 CP 3µ2 / 3µ2 5
4NK Yes

RT0 Hybrid-Parity µ+ 3
2µ2 / µ+ 3

2µ2 3
2NK Yes

RT0 AFCD 3µ2 / 3µ2 5
2NK Yes

LD µ+ 3
2µ2 / µ+ 3

2µ2 3NK N/A

We also performed numerous test cases that support our predictions and verify our

understanding of these methods. Our diffusion limit analyses yielded sharp predictions

that were all supported in our test cases. The parity LCFEM discretizations exhibited 2nd

order convergence in XY geometry, and all methods appear to be 2nd order in slab geom-

etry. Only the SAAF DSA scheme exhibited less effectiveness than our Fourier analysis

predicted. This was simply because we made an approximation for the boundary cells

in this case. We demonstrated that the even-parity method works well on irregular grids,

though the CFEM odd-parity method does not perform well for thick diffusive problems

on these grids. The reason appears to be that the underlying discretization violates the

discrete inf-sup condition. We were able to excite non-converging solutions in a simple

problem by analyzing the odd-parity CFEM matrix problem, supporting our explanation of

the problem.

We now face the question of which method is the best for thick diffusive problems.

First, both the hybrid-parity and the average of the vertex and cell center solutions in the
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modified SAAF LCFEM scheme satisfy the correct boundary and internal interface con-

ditions. However, these methods are subject to potentially spurious solutions since the

LCFEM discretization does not satisfy the discrete inf-sup condition. Their use for general

problems is likely to be unpredictable and possibly very inaccurate.

It would appear that theRT0 discretization of the coupled-parity system averaged with

the LCFEM even- parity system would be the best overall performer. The total number

of unknowns is half that of the linear discontinuous (LD) method applied to the first or-

der transport equation. However, with theRT0 discretization we are faced with inverting

symmetric indefinite matrices. Whether this is more or less efficient than the LD method

remains to be seen, and is likely dependent upon the specific computer architecture in

question. Further, the implementation of reflective boundary conditions and the treatment

of voids are troublesome. It is difficult to saya priori which method is best, though mixed

finite element methods for coupled-parity system along with standard linear continuous

finite elements for the even-parity appears to offer several advantages. First, rather than

writing complex sweeping routines for unstructured grids as in the LD case, we simply

form matrices with known structure. Efficient matrix inversion routines are available for

both SPD and indefinite problems. Further, the behavior of the hybrid-parity based onRT0

odd-parity should be more accurate on boundaries and interfaces of thick diffusive prob-

lems. Recall the LD/BLD satisfy a Marshak condition on the boundary, then the solution

drops to the correct interior magnitude in the first cell. The hybrid-parity method results

are much closer to the exact result in the first cell. We stress that it is not possible to apply

a corresponding discretization to the SAAF system as it is currently written. Recall that the

discretized SAAF system is simply the average of the discrete even- and odd-parity equa-

tions in the interior. Since the even- and odd-parity unknowns are not spatially co-located

when we applyRT0 to the CP system and LCFEM to the even-parity equation, it appears

that no corresponding SAAF discretization exists.
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It would appear that we have achieved the goals we set forth in the introduction. We

have rigorously characterized the behavior of our discretizations for thick diffusive prob-

lems without making restrictive assumptions about the details of the finite element weight

and basis functions or about the spatial mesh. Further, we have derived and implemented

efficient and stable DSA routines for the methods we developed. We have also completely

identified the relationship between the hybrid-parity method and the SAAF method. We

have suggested using powerful mixed finite element methods to avoid the discrete inf-sup

violation, though we implemented this only in slab geometry. All of our predictions were

well supported with numerical results.

B. Recommendations for Future Work

There are several outstanding questions that warrant future work. First, theRT0 method

should be implemented in XY and XYZ geometry. Our analysis indicates that it should

perform very well, without concern about spurious solutions that plague our LCFEM odd-

parity discretization. We also note that the support operator method [75, 76] may offer

another powerful method for addressing these problems, and that too should be investi-

gated.

Though we had originally hoped that the mixed finite element discretization of the

AFCD system would satisfy the correct boundary weighting for thick diffusive problems,

we found that it did not. We propose to investigate the effect of reformulating the boundary

condition (perhaps in the same way we modified the SAAF boundary condition to match

the parity results) in an effort to achieve better behavior.

We also are interested in the possibility of applying a more standard method, such as

LD, to the odd-parity system. Finally, we note that by formulating theRT0 as a discontin-

uous method, we may be able to sweep for a solution rather than inverting a matrix. This
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could be an advantage, depending on the type of problem to be run and on the specifics of

the computer architecture.
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