
A Variable Order Runge-Kutta Method for
Initial Value Problems with Rapidly Varying
Right-Hand Sides

J. R. CASH
imperial College
and
ALAN H. KARP
IBM Scientific Center

Explicit Runge-Kutta methods (RKMs) are among the most popular classes of formulas for the
approximate numerical integration of nonstiff, initial value problems. However, high-order Runge-
Kutta methods require more function evaluations per integration step than, for example, Adams
methods used in PECE mode, and so, with RKMs, it is especially important to avoid rejected steps.
Steps are often rejected when certain derivatives of the solution are very large for part of the region
of integration. This corresponds, for example, to regions where the solution has a sharp front or, in
the limit, some derivative of the solution is discontinuous. In these circumstances the assumption
that the local truncation error is changing slowly is invalid, and so any step-choosing algorithm is
likely to produce an unacceptable step. In this paper we derive a family of explicit Runge-Kutta
formulas. Each formula is very efficient for problems with smooth solutions as well as problems
having rapidly varying solutions. Each member of this family consists of a fifth-order formula that
contains imbedded formulas of all orders 1 through 4; By computing solutions at several different
orders, it is possible to detect sharp fronts or discontinuities before all the function evaluations
defining the full Runge-Kutta step have been computed. We can then either accept a lower order
solution or abort the step, depending on which course of action seems appropriate. The efficiency of
the new algorithm is demonstrated on the DETEST test set as well as on some difficult test problems
with sharp fronts or discontinuities.

Categories and Subject Descriptors: G.1.7 [Numerical Analysis]; Ordinary Differential Equations

Additional Key Words and Phrases: Differential equations, Runge-Kutta methods, singularities

1. INTRODUCTION
Explicit Runge-Kutta methods (RKMs) are among the most popular classes of
formulas for the numerical integration of the nonstiff initial value problem

2 = fb, Y), Ybo) = 3/o.

Authors’ addresses: J. R. Cash, Department of Mathematics, Imperial College, South Kensington,
London SW7 2A2, England; A. H. Karp, IBM Scientific Center, 1530 Page Mill Road, Palo Alto, CA
94304.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
0 1990 ACM 0098-3500/90/0900-0201501.50

ACM Transactions on Mathematical Software, Vol. 16, No. 3, September 1990, Pages 201-222.

202 l J. R. Cash and A. H. Karp

Because of their one-step nature, Runge-Kutta methods are self-starting, and
can change the step size of integration as often and by as much as required.
Efficient Adams formulas, such as the widely used code STEP [14], can also
change step size at every step, but in order to reduce overhead and to enhance
its theoretical support, it is strongly biased against doing so. RKMs also have
the advantage that the theory supporting the interpolation in a variable step
Adams code is less well developed than for Runge-Kutta methods.

One frequently quoted disadvantage of RKMs is that they require more
function evaluations per step than do linear multistep methods used in PEC or
PECE mode, and so may be uncompetitive with Adams methods if function
evaluations are very expensive. However, one of the present authors (AHK) has
been heavily involved in a spectral method for the solution of oil-reservoir
problems. These investigations have shown that, despite the fact that function
evaluations are extremely expensive, the great flexibility of step size allowed by
RKMs often solves these problems somewhat more efficiently, and with consid-
erably less storage space, than when using Adams methods.

This is due primarily to the erratic behavior of the solution, which typically
has smooth regions coupled to very sharp fronts. An effective method for such
problems needs to make frequent changes of step size. In solving these oil-
reservoir problems, it was very noticeable that in regions where the solution
trajectory was particularly rough, there were many rejected steps, which resulted
in an expensive integration. In part, the present investigation arose from a desire
to predict that a step will be rejected and to quit, or accept a lower order solution,
before all the function evaluations required to complete a full Runge-Kutta step
had been computed.

It is clear that, even though linear multistep methods use fewer function
evaluations per step than Runge-Kutta methods, this advantage can be lost when
the solution requires frequent changes in step size. Thus the claim that Runge-
Kutta methods are generally less efficient than linear multistep methods when
function evaluations are expensive-because they do more function evaluations
per step-is not always valid. In practice it is often found that Runge-Kutta
methods take larger steps, on average; and it is the distance divided by the cost
that is important. However, when the step size is restricted by, for example,
output requirements or nonsmooth behavior such as singularities, so that Runge-
Kutta methods are unable to take a relatively large step, it is the absolute cost
that is relevant.

For the oil-reservoir problems that one of us has solved, it is the flexibility of
the step-size selection in the Runge-Kutta methods that is important. Typically
the step size is cut by a large factor every 20 or so steps and by smaller amounts
every 5 to 10 steps. While a Runge-Kutta method can decrease the step size a
small amount, or increase the step size by a large amount at every step (typical
codes allow a step increase by a factor of 5), linear multistep methods (as typified
by [14]) can only halve the step size or double it every few steps. The ability of
Runge-Kutta methods to change the step size by small amounts, as needed by
the problem, in addition to increasing the step size rapidly when entering a
smooth region, gives the Runge-Kutta methods a larger average step size than
multistep methods on our reservoir problems.
ACM Transactions on Mathematical Software, Vol. 16, No. 3, September 1990.

A Variable Order Runge-Kutta Method l 203

Once we became interested in problems with solutions exhibiting very sharp
fronts, it was natural for us to consider discontinuous initial value problems
which are, in a sense, the limiting case. We use the term discontinuous initial
value problem rather loosely to refer to a problem with a solution having a
discontinuous derivative of some order. Such problems have recently become the
focus of renewed attention [4, 7, 81, and there is considerable interest in solving
them efficiently, reliably, and automatically. Although discontinuous IVPs are
not our main topic of interest, we show in Section 4 that the algorithms developed
in this paper do perform very efficiently on a large class of such problems.

A very widely used fixed-order Runge-Kutta code is RKF45 of Shampine and
Watts [16]. The RKM on which this code is based uses a total of six function
evaluations per step to give a main formula of order 5 and an imbedded formula
of order 4. The difference between these two solutions gives a local error estimate
in the fourth-order solution. If this error is less than a prescribed tolerance, it is
normally the fifth-order solution that is accepted (i.e., local extrapolation is
performed). This procedure is, of course, simply the well-known Fehlberg imbed-
ding technique applied to a 5(4) formula.

An important extension to this idea was given by Bettis [l], and further
developed by Verner [171. Verner constructed special Runge-Kutta formulas,
which he called CSIRK methods, that contain a complete set of imbedded RKMs.
He gave families of order p that contain imbedded methods of all orders 1,2, . . . ,
p - 1 for p = 5, 6, 7, and 8. One possible application of these formulas is in the
construction of a family of variable-order, imbedded Runge-Kutta methods with
order sp. Shampine et al. [15] used a similar idea to choose between 4(3) and
B(7) explicit Runge-Kutta methods. They showed that there is often a big
advantage in varying the order of Runge-Kutta codes. An important conclusion
of Shampine et al. is that Runge-Kutta methods are very efficient if the order is
properly matched to the accuracy required. Furthermore, they claim that if one
could select at each step the best fixed-order Runge-Kutta code for that step, the
resulting algorithm would compete with the best Adams codes in terms of
derivative evaluations, and would possess several important advantages. We have
found this to be especially true for problems having solutions with sharp fronts
or discontinuities where a low-order solution often has very good accuracy while
a higher order one has very poor accuracy.

Although there are some similarities between our approach and that of
Shampine et al. [15], the two differ in several important respects. First, we
implement a complete set of Runge-Kutta formulas, whereas they consider only
4(3) and 8(7) formulas. Second, we only accept a lower order solution that passes
the error test if higher order solutions fail this test. This strategy is justified later
in this paper. Finally, we are mainly interested in applying our formulas to
problems having regimes where the solution is “rough” or discontinuous. In
particular, our approach has proved to be very effective for integrating through
points where certain low-order derivatives of the solution are either discontinuous
or extremely large. For such problems, a low-order formula is normally more
effective than a higher order one, and also has the possibility of giving
a reasonable error estimate. Shampine et al. explicitly exclude this class of
problem.

ACM Transactions on Mathematical Software, Vol. 16, No. 3, September 1990.

204 l J. R. Cash and A. H. Karp

The variable order RKM which we describe reduces substantially the number
of function evalutions for many of the problems we have solved and requires only
a slight increase in overhead, which can normally be neglected if function
evaluations are reasonably expensive. The basic formula we use is (6,5) CSIRK,
derived using the theory developed by Verner [17]. A six-stage CSIRK formula
allows the construction of RKMs of all orders from 1 to 5, but as we explain in
Section 3, we only allow the possibility of accepting orders 2, 3, or 5. At each
step we use Fehlberg imbedding to compute an estimate of the error in lower
order solutions. If the local error estimate in a low-order solution indicates that
the step is likely to be rejected at order 5, we immediately reject the step and
investigate the possibility of accepting a lower order solution.

This strategy has a number of advantages. If the solution has a sharp front or
discontinuity, we frequently get the largest increase in step size in fewer than six
function evaluations. More importantly, since we can often detect when the step
needs to be cut, without computing all six function evaluations, the penalty for
rejecting a step is greatly reduced. We have modified the code RKF45 of Shampine
and Watts to incorporate these ideas. A listing of the code is available from one
of the present authors (JRC) and from NETLIB.

(2)

2. A MODIFIED CSIRK METHOD

In this section we derive a special Runge-Kutta formula of the form

0 0
c2 a21 0
c3 a31 a32 0
c4 a41 a42 a43 0
c5 a51 a52 a53 a54 0
C6 a3 a62 a63 a64 a65 0

bl b2 b3 b4 b5 b6

which has order 5, and also contains a complete family of imbedded Runge-Kutta
formulas of orders 1, 2, 3, and 4. Runge-Kutta formulas with a complete family
of imbedded methods, called CSIRK methods, have been studied in detail by
Verner [17], who derived CSIRK formulas of order 5, 6, 7, and 8. Because of the
special application we have in mind, we derive a different CSIRK formula from
the one given by Verner. In what follows, we describe the design criteria for our
formulas.

Our first concern is to derive formulas and error estimates that are of “good
quality” for general initial value problems. With this in mind, we chose the
coefficients of our CSIRK formulas so that their local truncation errors have the
form suggested by Dormand and Prince [5] and Shampine [13]. It is useful to
give a brief summary of these ideas here.

For discussion, we wish to compute a numerical solution of the initial value
problem (1) using a Runge-Kutta formula of order p. We further assume that the
numerical solution y,, at the step point x, has already been computed and that
our pth-order Runge-Kutta formula gives a solution Y,,+~ at the step point
ACM Transactions on Mathematical Software, Vol. 16, No. 3, September 1990.

A Variable Order Runge-Kutta Method l 205

x,+~ = X, + h. The local solution u(x) is defined to be the solution of

2 = fb, u), U(&) = Yn-

It is well known that

$+I x,+2
= h p+l C Tp+l,jDp+l,j + hp+2 2 Tp+z,jDp+2,j + O(hp+3)y

(4)

j=l j=l

where A,+, and A,+, are integers depending on p, the Dp+i,j are elementary
differentials depending on the problem, and the Tp+i,j are error coefficients
depending on the Runge-Kutta formula. It has been suggested by Dormand and
Prince [5] that every elementary differential should contribute to both the local
error and its estimate. We have constructed our formulas in line with this
suggestion. From Eq. (4), we see that this requirement is Tp+l,j # 0 for allj.

The next design criterion of interest concerns the relative size of the local
error in the imbedded formula compared with that of the higher order formula.
The larger the error in the imbedded formula, the more accurate the local error
estimate will tend to be. However, the step control procedure will be more
conservative, resulting in smaller steps and a generally more expensive integra-
tion. This question has been investigated by Shampine [13], and we have derived
our formulas with his suggestions in mind. For further comments on this subject
and for additional references, see Cash [3].

There is a third important design criterion we need to take into account: the
fact that we are particularly interested in nonsmooth solutions. We wish to
choose the ci so that they span the range [0, l] with reasonable uniformity. To
explain the need for this criterion, we describe our approach for detecting
nonsmooth behavior, which can best be done by considering imbedded formulas
of order 2 and 3. The second-order formula involves function evaluations at
points x, and x, + c2h, while the third-order formula involves function evaluations
at x, + cih, 1 5 i I 4. Embedded in the second-order formula we have a formula
of order 1, and an estimate of the error in the first- and second-order solutions
can be obtained by imbedding in the usual way. If the order 1 and 2 solutions are
sufficiently accurate (in a precisely defined sense, to be explained in Section 3),
then we go on to compute the fourth-order solution with the expectation that
the step length is sufficiently small to allow a highly accurate, high-order solution
to be computed. If, however, the first-order solution has good accuracy while the
second-order solution has very poor accuracy, then we would expect a “trouble
spot” in the range [x, + czh, x, + cqh]. If this were the case, we would accept the
order 1 solution and reduce the step (as described in Section 3). Similarly, we
have a well-defined course of action if the first-order solution has poor accuracy.

Given this strategy, it is clear that we would like the ci to span the range [0, l]
and to be reasonably equally spaced, with one of the ci = 1. This choice gives us
a very good chance of detecting bad behavior in the right-hand side of Eq. (l), if
it occurs. After having derived all the order relations for our CSIRK formulas,
we attempted to choose the coefficients to satisfy all of these (somewhat impre-

ACM Transactions on Mathematical Software, Vol. 16, No. 3, September 1990.

206 l J. R. Cash and A. H. Karp

cise) design criteria. The formula that we finally derived is:

0

1

s

3
lo

3
5

1

7
s

0

1

Ei

3
40

3
lo

11 --
54

1631
55296

0

9 0
40

9 6 0 --
10 5

5 70 35
5

--
27 27

175 575 44275 - -___
512 13824 110592

0

253 0
4096

(5)

37
378

2825

0 250
621

0 18575
27648

19

54

3 --
2

1

48384

0 10

-27

5 0
2

0 0

125 0 512 Order 5
594 1771

13525 277 1 Order 4
55296 14336 2

55 0 0 Order 3
54

0 0 0 Order 2

0 0 0 Order 1

When used as a fixed-order method, we refer to Eq. (5) as RKFNC; when used
as a variable order method, as VRKF.

It is interesting to examine the first few terms in the local error expansion of
this formula and to compare them with the errors in certain other widely used
5(4) formulas. A reasonable way of measuring the local error in a @h-order
formula, which has been used by several other authors, is to compute

(See Eq. (4).) These relations give the 2-norm of the error coefficients of order
p + 1 and p + 2 which are the first two nonvanishing terms in Eq. (4). For the
formula described in this paper and two reference formulas, the details are given
in Table I.

We note that, using these measures to quantify the local error, RKFNC has
considerably smaller terms in its local error than either RKF45 or Verner’s fifth-
order CSIRK method. The hope is that on problems with reasonably smooth
solutions, using RKFNC will result in increased efficiency. As we will see in
Section 4, this hope is realized for the DETEST test set. Before giving any
ACM Transactions on Mathematical Software, Vol. 16, No. 3, September 1990.

A Variable Order Runge-Kutta Method

Table I. Error Terms

l 207

Formula Order II T5 II 2 II ‘f6 II 2 II ‘I’, II 2
RKF45 Main 5 0 0.0034 0.0068

Embedded 4 0.0018 0.0058 -
Verner 5(4) Main 5 0 0.0037 0.0070

Embedded 4 0.0012 0.0054 -
RKFNC Main 5 0 0.0009 0.0013

Embedded 4 0.0005 0.0011 -

numerical results, however, we first explain in detail our computational procedure
for dealing with any regions where the solution of our problem exhibits particu-
larly nonsmooth behavior.

3. A STRATEGY FOR DEALING WITH NONSMOOTH BEHAVIOR

The Runge-Kutta formula derived in the previous section has the special property
that it contains imbedded solutions of all orders less than five. In addition, the
formula has been designed so that the first five ci values span the range [0, l]
with reasonable uniformity, so that we have a very good chance of spotting bad
behavior in f if it occurs. Our aim is to derive an automatic strategy that allows
us to quit early, i.e., before all six function evaluations have been computed on
the current step, if we suspect trouble, and to accept a lower order solution if
appropriate.

We assume that we have computed a numerical solution ynel at the step point
x,-~ and that for the current step, from x,-~ to x, = x,-~ + h, all six function
evaluations are computed so that solutions of all orders from 1 to 5 are available.
(We guarantee this situation for the first step with n = 1). We denote the
imbedded solution of order i at x, by y:‘, 1 I i 5 5, and define

ERR(n, i) = 11 yf+l) - yx’ 11 l/(i+l), for i E 1, 2, 4. (6)

We exclude the case i = 3 for two reasons. First, following the approach of
Shampine et al. [151, we allow only a few different orders to be used, and we have
chosen to allow orders 2, 3, or 5. Second, ERR(n, 3) is of no use in predicting
when to quit early since all six ki’s are required before y lp’ can be computed.

Suppose now that we were to_accept the solution of order 5 at x,. We wish to
compute a suitable step length, h4, to be used in integrating from?,, to xnfl using
a 5(4) formula. A typical step-choosing strategy would compute h4 as

h =SFxh ERR(n, 4)
4

Eh 4) ’
where E(n, 4) = E1/5 .

Here E is the local accuracy required (as specified by the user) and SF is a safety
factor often taken to be 0.9. Similarly, if we were to accept either the second- or
third-order solution at x,, the steplengths h,, h,, respectively, that would be
selected at the next step by our step-control algorithm would be

h. = SF x h
’ E(n, i) ’

ERR(n, i)
where E(n, i) = E l/G+ 1) , i E 1, 2. (8)

ACM Transactions on Mathematical Software, Vol. 16, No. 3, September 1990.

208 - J. R. Cash and A. H. Karp

From relations (7) and (8), we can compute what we call our quitting factors,

h, Eh, i) QUIT(n, i) = = = ~
hi Eh 4) ’

i E 1, 2.

To explain how these quitting factors are used, it is convenient to assume that
the fifth-order solution yi5’ is accepted at x,. We now consider what happens in
integrating from x, to x~+~. The first stage in integrating forward from x, is to
compute two function evaluations k, and ha, and use these to compute first- and
second-order solutions, ~21,’ and y:i,, at x,+~. We can now compute

ERR(n + 1, 1) = lly!il - y?il l11’2. (10)

Use of this error estimate allows us to compute the step 6, which would be used
for the next step if we were to accept the first-order solution:

(11)

where E(n + 1, 1) is defined as in Eq. (8).
We now have sufficient information to allow us to estimate the step h, which

would be selected for the next step if all six function evaluations defining the
current step were computed and a fifth-order solution, y?i,, accepted. By
definition & = QUIT(n + 1, 1) x h,. We now assume that QUIT(n + 1, 1) =
QUIT(n, l), where QUIT(n, 1) is available from the previous step. Now we can
make the approximation

i, = QUIT(n, 1) X h, =
QUIT(n, 1) X SF X h

E(n + 1, 1) ’
(12)

If 6d < SF x h, that is,

QUIT(n, 1) < E(n + 1, l), (13)

then we expect that the fifth-order solution will be rejected, and we should
abandon the current step. It is important to realize that this test can be performed
after only two function evaluations have been computed. Although this approach
forms the basis of our strategy, it is not quite the strategy that is used in practice,
as we now explain.

An important part of our strategy is the assumption that the quit factors are
changing slowly from step to step (as they normally will with smooth solutions),
so a big change in the quit factor for a low-order solution signals trouble and
causes us to abandon the current step. However, we must allow the quit factors
to increase slowly from step to step, which means that the satisfaction of
Eq. (13) is too severe a requirement to impose. We overcome this problem by
introducing a twiddle factor, so that our code will quit early when

E(n + 1, 1) > QUIT(n, 1) x TWIDDLE(n, 1).
ACM Transactions on Mathematical Software, Vol. 16, No. 3, September 1990.

(14)

A Variable Order Runge-Kutta Method * 209

We experimented with several twiddle factors using only the information that
they should be greater than unity and not “too big,” i.e., probably less than 1.5.
Our experiments showed clearly that the optimal value of these twiddle factors
was problem-dependent, and so in our implementation we allowed them to be
chosen dynamically. At the end of this section we list our complete strategy in
step-by-step form. Before doing so, we explain what happens when a lower order
solution is accepted. We first explain under what circumstances we accept
solutions of various orders.

We assume that the current step is successful, i.e., E(n, i) < 1 for at least one
i E [1, 2, 41. Then if

(i) E(n, 1) < 1, E(n, 2) > 1, E(n, 4) > 1, accept y?il
(ii) E(n, 1) < 1, E(n, 2) < 1, E(n, 4) > 1, accept y?ll

(iii) E(n, 1) < 1, E(n, 2) < 1, E(rz, 4) < 1, accept yi5i1.

Thus, we see that at each step we only accept the second-, third-, or fifth-order
solutions. This strategy of allowing only a few different orders in a variable
order Runge-Kutta code (i.e., not allowing first- or fourth-order solutions in our
case) is in line with the results of Shampine et al. [15], who found this approach
to be the most efficient.

Let us now suppose that case (i) holds, and we wish to accept the order 2
solution. The error estimate in this solution is based on the following information.

0 0
1

c

1
5 5 0

Since we have only used values of ci up to l/5, and we suspect there may be
trouble ahead due to the unacceptability of higher order solutions, it would be
dangerous to integrate past x, + h/5 on the current step. Thus, using the above
information, the solution we compute at x,,+~ = x, + h/5 is

Yn+1 = yn + $) (Izl + k2).

The corresponding order 1 solution is

and the error estimate for this solution is

E:(1/5) = ~n+l - %+I = $ (h - h).

If]I E,?,(l/5) (1 > 6, then the step is abandoned and the integration is continued
from (x,, y,) with a step h/5. Otherwise, the solution yn+l is accepted, and the
value h/5 is used for the next integration step starting from (x, + h/5, Y,,+~).

ACM Transactions on Mathematical Software, Vol. 16, No. 3, September 1990.

210 ’ J. R. Cash and A. H. Karp

A similar strategy is used if the third-order solution, y?il, is accepted. The
information on which this solution and its error estimate are based is as follows.

0 0

1 1 0
s 5

3 3 9 0
lo 40 40

3 3 9 6 0
s lo -- 10 5

19 0 10 55 Order 3
54 -- 27 54

3 5 --
2 2

Order 2

Similar arguments to those used for the first-order solution can now be applied.
Since the order 3 solution is acceptable, while the order 4 solution is not, we
anticipate possible trouble in the range [x, + 3h/5, x, + h]. As a result, it is only
safe to integrate forward a distance 3h/5 during the current step. We therefore
seek a third-order formula of the form

yn+3/5 = yn + ; h&h + bakz + bska + bdk4)

which uses information that has already been computed to integrate forward a
distance 3h/5 rather than h. It is straightforward to show that the choice bl =
b4 = l/6, b3 = 2/3, b2 = 0 satisfies this requirement. Our strategy is to accept the
third-order solution with

yn+3/5 = yn + h $j k, + $ kr, + j+j kq (16)

as the solution at x, + 3h/5, providing that it satisfies an appropriate error
criterion. A second-order formula at x,,+~/~ is

Yn+3/5 = yn + ; h$.

An estimate of the error for this solution is

If]] E2,(3/5)]] > E, then we abandon the third-order solution and test the
acceptability of a second-order solution at x, + h/5, as previously described.
Otherwise, the solution Y,,+~/~ is accepted, and we continue the integration from
(x, + 3h/5, yn+3,5) using a step 3h/5.

We see from this approach that important use is made of what Shampine
et al. refer to in [15] as “fall back” formulas. The idea is that, if an integration
ACM Transactions on Mathematical Software, Vol. 16, No. 3, September 1990.

A Variable Order Runge-Kutta Method l 211

over the whole step [x,, X, + h] using the 5(4) pair fails because of something
bad in the region (x, + h/5, x, + h], then it is possible to use an independent,
lower order solution that uses information taken only from the first part of the
step. In our algorithm we have a “fall back” formula that uses information only
in the region [x,, x, + h/5] if the third-order solution appears bad, and a second
“fall back” formula that uses information in the region [x,, X, + 3h/5] if the
fourth-order solution appears bad.

There are two different interpretations of what might go wrong in a step to
cause a higher order solution to be rejected. It is convenient to discuss this point
in terms of the lower order formulas. If the (1, 2) pair succeeds, but the (2, 3)
pair does not, it may be that the (1, 2) pair has not sampled the function in the
range (x, + h/5, x, + h] where something bad happens that the third-order
formula detects. Alternatively, it may be that the problem “looks” smooth to the
second-order formula, but does not look smooth to the third-order formula. In
the latter case, the third-order formula may be accurately reflecting the true
behavior of the solution, and there may be nothing wrong with the last part of
the step. In constructing our algorithm we have adopted the first point of view,
i.e., that failure of a high-order solution, but success in a low-order solution,
indicates bad behavior in the latter part of the step.

We now explain our complete algorithm in more detail. First, we initialize the
constants.

(1) Set the twiddle factors.
These factors can be arbitrary, but they should be set just larger than unity.
In our code we take TWIDDLE(0, 1) = 1.5 and TWIDDLE(0, 2) = 1.1. As
explained earlier, these values will be changed automatically by the code.

(2) Set the quit factors.
These values should be set to be quite large initially to make the code take a
full step at the start. In our code we use QUIT(0, 1) = QUIT(0, 2) = 100.

Next, we integrate one step at a time. Assume that an approximate solution
ynel has been computed at the step point x,-~.

(1) Compute the first two function evaluations in VRKF.
(2) From these evaluations obtain an error estimate ERR(n, 1) in the order 1

solution using Fehlberg imbedding with the order 1 and 2 solutions.
(3) Compute E(n, 1) as in (8).
(4) Check the error estimate.

IF E(n, 1) > TWIDDLE@ - 1, 1) x QUIT(n - 1, l),
THEN abandon the step.

a. Put ESTTOL = E(n, l)/QUIT(n - 1, 1).
b. Choose the next step has

h= max(i, ,,::,,) X h. (17)

c. Go to step 1.
ENDIF

(5) Compute the third and fourth function evaluations in VRKF.
(6) Compute the order 3 solution.

ACM Transactions on Mathematical Software, Vol. 16, No. 3, September 1990.

212 ’ J. FL Cash and A. H. Karp

(7) Compute ERR(n, 2) = 11 yip’ - y:’ /11’3 and hence E(n, 2) from (8).
(8) Check the error estimate.

IF E(n, 2) > TWIDDLE(n - 1,2) x QUIT(n - 1,2),
THEN try a lower order solution.

IF E(n, 1) < 1,
THEN check the error of the second order solution.

IF II EAW5) II < 6,
THEN accept the second order solution computed from (15).

a. Cut the step from h to h/5.
b. Replace n by n + 1.
c. Go to step 1.

ELSE abandon the step.
a. Cut the step from h to h/5.
b. Go to step 1.

ENDIF
ELSE abandon the step.

a. Set ESTTOL = E(n, 2)/QUIT(n - 1, 2).

b. Choose the step has in (17).
c. Go to step 1.

ENDIF
ENDIF

(9) Compute the final two function evaluations in VRKF.
(10) Use all six function evaluations to compute the order 4 and 5 solutions.
(11) Compute ERR(n, 4) = II y:’ - yA4’ II ‘I5 and hence E(n, 4) from (8).
(12) Check the error estimate.

IF E(n, 4) > 1,
THEN readjust the twiddle factors.

IF E(n, i)/QUIT(n - 1, i) < TWIDDLE(n - 1, i), iEl,2
THEN TWIDDLE(n, ;) = MAX(l.l, E(n, i)/QUIT(n - 1, i)).
ELSE TWIDDLE(rz, i) = TWIDDLE(n - 1, i).

ENDIF
IF E(n, 2) c 1,

THEN check the accuracy of the third order solution.
IF II EZ(3/5) II < t,

THEN accept the order 3 solution computed from (16).
a. Cut the step from h to 3h/5.
b. Replace n by n + 1.
c. Go to step 1.

ENDIF
ELSE try a lower order solution.

IF E(n, 1) c 1,
THEN check the accuracy of the second order solution.

IF II E!t(1/5) II < 6,
THEN accept the order 2 solution computed from (15).

a. Cut the step from h to h/5.
b. Replace n by n + 1.
c. Go to step 1.

ACM Transactions on Mathematical Software, Vol. 16, No. 3, September 1990.

A Variable Order Runge-Kutta Method . 213

ELSE abandon the step.
a. Cut the step from h to h/5.
b. Go to step 1.

ENDIF
ELSE abandon the current step.

a. Set the step has in (17) where ESTTOL = E(n, 4).
b. Go to step 1.

ENDIF
ENDIF

ELSE accept the order 5 solution for X, = x,-~ + h.
Choose the new step k as

h= min(5.0,&) X h.

Update the quit factors. (We will give our strategy here and explain
it later.) Define Q1 = E(n, l)/E(n, 4) and Qz = E(n, 2)/E(n, 4).
Then forj E (1, 2),

IF Qj > QUIT(n - 1, i),
THEN Qj = min(Qj, 10 X QUIT(n - 1, j)).
ELSE Qj = max(Qj, f X QUIT(n - 1,j)).

ENDIF
QUIT(n, j) = max(l.O, min(lOOOO, Qj)).

Set TWIDDLE(n, i) = TWIDDLE(n - 1, j).
ENDIF

The quit factors are not allowed to vary by arbitrary amounts at each step,
since we do not want an isolated, very good solution or an isolated, very poor
solution to have a big effect on the quit factors. We prefer to have the quit factors
change slowly from step to step. A second reason for limiting the change in the
quit factors comes from examining the error test

IF E(n, j) > TWIDDLE(n - 1, j) X QUIT(n - 1, j), THEN quit.

We see from this test that, if our quit factors are too small, then we are forced
to quit early unnecessarily. Such a situation may occur when we move from a
smooth region, where the quit factors will normally be large, into a rough region,
where the quit factors would become very small if allowed to become so. If we
then move back into a smooth region (which would typically happen after passing
through a discontinuity), we may not be able to increase the step very quickly,
due to the extremely small quit factors.

A final factor is that it is generally better to complete the step by computing
all six function evaluations, and then to reject the solution, than to quit early
when a full step would have been accepted. When a full step has been completed,
we have a complete set of information on which to base our step-choosing
strategy; when we quit early, we have much less information available for
choosing h.

For all these reasons, it is much more desirable for the quit factors to be too
large than too small. (However, for smooth problems the quit factors normally
do an extremely good job of judging when to quit early.) In view of these
observations, we limit the change in quit factors from step to step, but allow

ACM Transactions on Mathematical Software, Vol. 16, No. 3, September 1990.

214 l J. R. Cash and A. H. Karp

Table II. Distance Forward per Function Evaluation

Function Distance forward
Order evaluations (F) (D) D/F

2 2 h/5
3 4 3h/5

5 6 h

h/10
3h/20

h/6

them to increase much more rapidly than they are allowed to decrease. In our
program we limit the decrease to a factor of $ while allowing an increase of up
to a factor of 10 per step.

Finally, in this section we wish to explain why we do not necessarily accept a
lower order solution early and abandon the rest of the step if it passes the error
test. A strategy of accepting early could well be used in a variable order code
designed for smooth solutions, but we are particularly interested in problems
where there is a distinct lack of smoothness. If we were to accept early and adopt
the step-choosing strategy described earlier in this section, the distance travelled
forward per function evaluation is as shown in Table II. We see that, on a step
where solutions of all orders pass the error test, it is the order 5 solution that
goes the farthest forward per function evaluation.

There is an obvious way to increase the distance travelled for the low-order
solutions if we believe the solution to be smooth. Suppose the order 1 solution
passes the error test. We accept this solution and compute

Yn+l = Yn + w h, Yn). (18)

Accepting the solution yn+l can be regarded as a bit suspect because we have only
used information in the range [x,, X, + h/5], and we have not sampled f at all in
the range (x, + h/5, x,+i]. However, we go on to the next step and compute
f bn+l, Yn+l). Using this extra function evaluation allows us to compute a second
estimate of the error in y,,+, as

E = y(xn+d - ~ntl

Order 2 solution

- in - hfbn, in)
Order 1 solution

= ; VkL, YJ - fbn+l, Yn+dl.

This new error estimate uses information at x, and x,+~. If this estimate is less
than the prescribed tolerance, then we continue with the next step (the cost of
computing the additional error estimate will be negligible). Otherwise, we accept

Yn+1 = Yn + ; f(%, Yn).

The cost of having to reject the solution defined by (18) will be one function
evaluation. We have not examined this approach because we are interested
mainly in nonsmooth solutions.
ACM Transactions on Mathematical Software, Vol. 16, No. 3, September 1990.

A Variable Order Runge-Kutta Method l 215

4. NUMERICAL RESULTS

In this section we give some numerical results that were obtained by applying a
code based on Eq. (5) and the ideas explained in Section 3 to some test problems.
We consider first the performance of our code on some smooth problems. Then
we look at how our code does with some rough problems.

The smooth problems chosen are the well-known DETEST test set which
contains five classes of smooth problems. Table III compares the results of three
codes, RKF45, RKFNC, and VRKF. RKFNC is identical to RKF45, except that
it uses the coefficients from Eq. (5); VRKF uses the coefficients from Eq. (5) and
the variable order scheme described in Section 3.

While RKF45 is no longer the “state of the art” 5(4) Runge-Kutta formula, it
is very widely used (it appears in several subroutine libraries), and we feel it is a
suitable code to compare to ours.

Although we have been very careful to derive our code with quality in mind,
as explained in Section 2, we were very surprised at how well RKFNC performed
on the DETEST test set compared to RKF45. As can be seen from Table III,
there is a gain in efficiency of about 25% in terms of time and function
evaluations. This leads us to believe that, for the DETEST test set at least,
the code based on RKFNC is a considerable improvement over RKF45. We see
no reason why this conclusion should not extend in general to problems with
smooth solutions.

We also see that VRKF is somewhat better than RKF45 in terms of both
function evaluations and time. However, VRKF is only superior to RKFNC in
terms of function evaluations at low accuracy. The time required to check the
errors at the intermediate steps makes VRKF less efficient than RKFNC, even
at low orders, if function evaluations are fast. We believe this conclusion will
hold for other problems, making RKFNC the method of choice for smooth
problems.

We now consider the performance of our code on some problems with non-
smooth solutions. Our primary interest is in problems having solutions with
sharp fronts but which are not discontinuous. However, in our numerical exper-
iments, we consider problems with discontinuities that are triggered by a condi-
tion on x. Problems with discontinuities triggered by y, or one of its derivatives,
are rather more specialized. We consider them to be beyond the scope of this
paper. Such problems are of considerable interest, and we hope to extend our
algorithm to deal with these problems at a future time.

The class of discontinuous problems we are interested in are those where the
discontinuities appear without warning. An example is where the right-hand side
is supplied by some black box code that hides the switching from the user. Such
problems are much harder than those for which we know the x-value where f
changes, or we are given a switching function which, on reaching a certain known
value, triggers the discontinuity. It is important to use information regarding the
switching function, if it is known, and several authors have proposed algorithms
for dealing with this problem [2, 6, 9, 11, 121.

The case of interest to us, where the switching function is not known, has been
considered by Gear and Osterby [8] and by Enright et al. [7]. The approach
adopted by Gear and Osterby attempts to identify the nature of the singularity.

ACM Transactions on Mathematical Software, Vol. 16, No. 3, September 1990.

216 l J. R. Cash and A. H. Karp

Table III. Summary of Results on the 25 (unscaled) DETEST Test Set

Fraction
Function Number of Maximum Fraction bad

log,,TOL Time calls steps local error deceived deceived

Results for RKF45
-2.00 0.498
-3.00 0.565
-4.00 0.745
-5.00 1.014
-6.00 1.453
-7.00 2.117
-8.00 3.136
-9.00 4.849

Overall 14.377
Results for RKFNC

-2.00 0.408
-3.00 0.478
-4.00 0.626
-5.00 0.828
-6.00 1.145
-7.00 1.628
-8.00 2.370
-9.00 3.601

Overall 11.083
Results for VRKF

-2.00 0.495
-3.00 0.591
-4.00 0.760
-5.00 1.029
-6.00 1.407
-7.00 2.033
-8.00 2.953
-9.00 4.457

Overall 13.726

4123
4587
6344
8935

12948
18741
27552
42648

125878

3272
3965
5432
7508

10710
15349
22419
34086

102741

3171
3919
5327
7488

10688
15645
22940
34524

103702

548 50.869
637 9.300
884 3.442

1270 1.439
1893 6.938
2886 2.144
4477 1.491
7023 1.270

19618 50.869

437 7.762
555 10.875
752 6.355

1068 5.285
1555 3.471
2349 1.485
3609 1.480
5636 1.560

15961 10.875

465 6.495
580 10.875
782 3.283

1115 2.196
1604 2.760
2392 1.783
3674 1.628
5697 1.209

16309 10.875

0.224 0.038
0.148 0.006
0.070 0.000
0.012 0.000
0.005 0.001

0.002 0.000
0.001 0.000
0.000 0.000

0.017

0.156
0.138
0.092
0.050
0.027
0.013
0.004
0.001

0.024

0.099
0.064
0.051
0.025
0.017
0.008
0.004
0.000

0.014

0.001

0.005
0.004
0.001
0.001
0.000
0.000
0.000
0.000

0.000

0.009
0.003
0.000
0.000
0.000
0.000
0.000
0.000

0.000

It is not clear how their approach will perform when the function is rapidly
varying but does not actually contain a discontinuity (see [8, p. 411).

All of the algorithms that we have mentioned for discontinuities and rapidly
varying functions are at a rather preliminary stage of development. Few numerical
results have appeared in the literature. For this reason we will not attempt to
compare different methods for dealing with discontinuities. Instead we compare
the performance of our code with that of a standard 5(4) Runge-Kutta code used
with Fehlberg imbedding and local extrapolation. Our aim is to demonstrate the
superior performance of a modified 5(4) code compared to that of a conventional
code of the same type.

In what follows we consider four test problems. The first two have sharp fronts
but no discontinuities, while the second two have discontinuities triggered on x.
As explained earlier, we assume that the analytic form off is unknown to us, so
that we are not able to use information concerning the exact location of any
discontinuous points off or its derivatives in deriving our algorithm.
ACM Transactions on Mathematical Software, Vol. 16, No. 3, September 1990.

A Variable Order Runge-Kutta Method l 217

Problem 1.

y’ = 2, y(0) = 10
0 5 x 5 50.

z I- - 22 - 3

(A + Y') '
z(0) = 0

This problem’ does not have a known, analytic solution. However, it was found
to be a very good model for testing ODE solvers for the oil-reservoir problems
one of us was studying. The solution is smooth almost everywhere except near
x = 35, where it develops a sharp front. We believe it to be a very interesting and
illuminating test problem for codes designed to deal with nonsmooth solutions.
The values of the parameter A, which we considered for this problem, are lo-‘,
10e2, 10e3, 10e4, 10e5. Errors are computed at the end of the range only (x = 50),
where the solution was found using the code with a very small E. Thus, the
“exact” solution, used to compute the errors, itself has an error of about lo-‘.

Problem 2.

y’=z, y(-1) = -1,

z,=-(l+~2A)cos~~-~xsin~x-xxz+y -15x51.

A 3 2(-l) = 0.0017,

The true solution to this problem from Hemker [lo, p. 1381 is

y(x) = cos xx + x

+
x&? exp(-x2/(2A))exp(l/(2A)) + exp(l/(BA))& erf(r/&)

& + exp(l/(2A))& erf(l/&)

This problem has a smooth solution x + cos XX coupled to rapidly varying
solutions at x = +l. For a description of the behavior of the complementary
functions, the reader is referred to [lo, p. 161. In Table V we give results for this
problem with A = 0.1.

Problem 3.

1

0 xc0
y' = -1 5 x 5 1, y(-1) = 0.

XA xro

This linear problem from [15, p. 151 has a discontinuity in the (A + 1)th derivative
at the point x = 0. In Table VI we give the results obtained for this problem in
the cases A = 0, 1, 2, 3.

Problem 4.

55 - 1.5y if [x] even
y' = 0 5 x 5 20, y(0) = 110.

55 - 0.5y if [x] odd

’ This problem was taken from the literature, but the reference can no longer be found. We apologize
to the author.

ACM Transactions on Mathematical Software, Vol. 16, No. 3, September 1990.

218 - J. R. Cash and A. H. Karp

Table IV. Results for Problem 1

A 10-i 1o-2 10+ 1o-4 1o-5

TOL Evals Error Evals Error Evals Error Evals Error Evals Error

Results for RKF45
1o-3 276 0.243-2

lo-* 390 O.l2E-3
lo+ 578 0.71E-5
1O-6 783 0.483-6
1o-7 991 0.20E-8
1o-8 1546 0.853-8
1o-9 2398 0.763-g

Results for RKFNC
lo+ 213 0.21E-3
lo-’ 293 0.30E-4
lo+ 411 O.llE-5
1o-6 586 0.283-7
1o-7 801 0.243-7
1o-8 1185 0.563-8
1o-9 1771 O.llE-8

Results for VRKF
lo+ 211 0.263-3
lo-* 281 0.21E-4
1o-5 430 0.20E-6
lo-+ 599 0.50E-7
lo-’ 800 0.343-7
lo-@ 1196 0.553-8
lo+ 1788 O.lOE-8

344 O.l7E-2 417 O.l8E-2 486 0.223-2 566 0.233-2
481 O.l3E-3 567 O.l5E-3 686 O.l5E-3 795 O.l8E-3
698 0.14E-4 846 O.lOE-4 1016 O.llE-4 1177 O.l2E-4
981 0.733-7 1198 O.l2E-6 1442 0.233-7 1704 O.l7E-6

1257 0.343-7 1547 0.333-7 1841 0.273-7 2144 0.353-7

1887 O.lOE-7 2259 0.91E-8 2661 O.lOE-7 3111 O.lOE-7
2910 O.lOE-8 3508 0.823-g 4145 0.823-g 4887 0.893-g

283 0.923-4 346 O.l5E-3 420 O.l9E-3 480 O.l7E-3
358 0.21E-4 454 O.l9E-4 519 0.393-5 632 O.l4E-4

538 0.293-6 663 0.593-7 799 0.223-6 920 0.253-6
734 O.l3E-6 920 O.l5E-6 1118 O.l6E-6 1317 0.233-6

1027 0.443-7 1272 0.563-7 1576 0.753-7 1867 0.70E-7
1446 0.90E-8 1715 O.llE-7 2011 O.l2E-7 2364 O.l2E-7
2110 O.l6E-8 2549 0.973-g 3053 O.l7E-8 3598 O.l2E-8

243 0.293-3 297 0.273-3 346 0.263-3 396 0.253-3
342 O.l5E-4 405 O.l6E-4 474 0.243-4 549 O.l8E-4
504 0.733-6 596 0.543-6 707 0.543-6 823 O.lOE-5
724 O.l6E-6 857 O.l5E-6 1049 0.21E-6 1255 0.31E-6

1042 0.463-7 1303 0.50E-7 1605 0.543-7 1902 0.60E-7
1478 0.883-8 1748 O.llE-7 2043 O.l2E-7 2391 O.l2E-7
2124 O.l5E-8 2573 O.l6E-8 3087 O.l5E-8 3623 O.l6E-8

Euak; The number of function evaluations.
Error: The computed error at the endpoint.

Table V. Results for Problem 2

TOL

Number of function evaluations Modulus of error at endpoint

RKF45 RKFNC VRKF RKF45 RKFNC VRKF

1o-3 94 87 89 0.26E-0 0.48E-1 0.48E-1
1o-4 131 107 109 0.31E-1 0.283-2 0.283-2
10-S 203 156 163 0.373-2 0.20E-3 0.20E-3

1o-6 316 251 252 O.l2E-3 O.l4E-4 O.l4E-4
lo+ 484 384 391 0.843-5 0.983-6 0.253-6
1o-8 770 610 617 O.llE-5 0.50E-7 0.633-7
1o-9 1191 952 964 O.lOE-6 O.l6E-8 O.l5E-8

This problem is F2 of the DETEST test set. For this problem, the function f
has a discontinuity wherever x is an integer. The results obtained are given in
Table VII.

Before discussing our numerical results in detail, we briefly discuss the
sort of numerical results we might expect to obtain. We first note that
Runge-Kutta methods are one-step in nature. We therefore expect them to
have less trouble with singularities than would multistep methods such as Adams
ACM Transactions on Mathematical Software, Vol. 16, No. 3, September 1990.

A Variable Order Runge-Kutta Method

Table VI. Results for Problem 3

. 219

A
0 1 2 3

TOL Evals Error Evals Error Evals Error Evals Error

Results for RKF45
1O-3 67
10-d 121
1o-5 155
1o-6 190
10-T 246
lo-* 278
1o-9 327

Results for RKFNC
1o-3 67
10+ 90
lo+ 161
10-G 174
lo+ 240
lo+ 254
lo+ 330

Results for VRKF
1O-3 47
1o-4 67
lo+ 98
1o-6 116
10-T 126
1O-8 148
10+ 159

0.723-2 23
O.llE-3 40
0.243-3 62
0.333-4 79
0.20E-5 128
0.69E-7 155
0.453-8 225

0.223-2
0.923-3
0.20E-3
O.llE-4
0.41E-7
O.l9E-6
0.493-8

0.773-2
O.l5E-2
0.91E-4
0.243-4
0.553-6
0.40E-6
O.l3E-7

0.333-2 18
O.l6E-3 18
0.883-4 46
0.343-5 46
0.79E-6 64
O.l8E-6 107
O.l9E-7 112

29 O.llE-2
51 O.l7E-3
56 O.l2E-3
96 0.283-6

107 0.20%6
130 O.l3E-7
153 0.373-8

19 0.31E-2
37 0.51E-3
54 O.l6E-3
67 0.853-7
66 0.693-7
68 O.l2E-6
98 0.61E-9

0.843-2 18
O.l2E-4 24
O.lSE-4 30
0.693-6 52
0.293-5 58
0.823-7 81
0.94E-8 85

23 0.363-3
24 O.l2E-3
41 0.383-4
52 O.llE-5
79 O.l9E-6
97 O.l2E-7

107 0.973-7

18 0.683-3
24 0.673-4
24 O.llE-7
46 0.433-6
58 0.993-7
52 O.l3E-9
69 O.l4E-9

19 0.353-3 19
25 0.21E-3 25
lc, 0.723-5 19
49 O.l9E-5 55
64 0.763-7 40
63 O.llE-8 61
73 0.223-g 64

0.353-2
O.l2E-3
O.l7E-4
0.363-5
0.283-7
0.343-S
O.lOE-9

O.l7E-3
O.l5E-3
0.883-4
0.423-5
0.753-6
0.893-g
O.l9E-10

Euals: The number of function evaluations.
Error: The computed error at the endpoint.

Table VII. Results for Problem 4

TOL

Number of function evaluations

RKF45 RKFNC VRKF

Modulus of the error at the
endpoint

RKF45 RKFNC VRKF

1o-3 1013 1046 936 O.l4E-1 0.50E-2 O.l3E-1
lo-’ 1704 1606 1213 O.l6E-2 0.333-3 0.60E-3
1o-5 2087 1983 1530 O.llE-3 O.lOE-3 O.l5E-3
lo+ 2601 2443 1918 0.583-4 0.70E-5 0.873-5
1o-7 3027 3011 2198 0.21E-5 0.61E-6 O.l5E-5
1o-8 4176 3822 2853 O.l2E-6 0.653-S 0.863-8
lo+ 5125 4640 3425 0.51E-7 O.l6E-8 O.l7E-7

predictor-corrector formulas, for example. Indeed, if the “natural” step sequence
chosen by the Runge-Kutta code nearly hits the singularity, then the unmodified
code may experience very little difficulty in passing through the singular point.
In view of this fact, we expect the variable order code to generally perform
better than RKF45. Of course, there may be cases when solving discontinuous
problems where RKF45 performs particularly well, due to a fortunate choice
of step-size sequence.

ACM Transactions on Mathematical Software, Vol. 16, No. 3, September 1990.

220 l J. Fi. Cash and A. H. Karp

The situation is quite different for problems where f is rapidly varying but not
discontinuous. In such cases the rough behavior in the solution will occur over a
range of x rather than at a particular point. The unmodified code will not be able
to step through the rough part of the solution trajectory without noticing it. For
such problems, we would expect the modified code based on VRKF to be superior
to the unmodified RKF45, especially for relaxed tolerances when the codes
normally try to use a large step-length.

We first consider the results obtained for Problem 1. This problem has a sharp
front near x = 35, which steepens as A decreases. It is very noticeable from the
results that, as the front gets steeper, the steplength of integration has to be cut
back more and more, resulting in many rejected steps. This is an example of a
problem where there is not just one point where bad (singular) behavior occurs.
Instead, the difficult region extends over a range of x.

As mentioned earlier, for such problems we expect the variable order code
VRKF to perform better than either RKF45 or RKFNC. This is borne out by
the results given in Table IV, which show that VRKF is generally 25%-35%
more efficient than RKF45. A large part of this gain is due to the use of the new
coefficients, as can be seen from the results of RKFNC. At a modest tolerance,
VRKF needs about 10% fewer function evaluations than RKFNC. When TOL
is less than 10p6, RKFNC is more efficient than VRKF. This effect occurs
because, at such small tolerances, the step-size is small compared to the width of
the front. In other words, the function appears smooth at the resolution of the
step-size. However, the difference is small, and VRKF can be used without great
loss of efficiency, especially if the function evaluations are expensive.

Results for Problem 2 are rather harder to predict, since the problem has
boundary layers at both ends of the range of integration. In fact, this equation
was used as an experiment to see how the codes would perform on such a problem.
As can be seen from Table V, RKFNC is about 20% more efficient in terms of
function evaluations than RKF45 and achieves much better accuracy. Indeed, if
we compare function evaluations against accuracy, we see that RKFNC needs
about half the function evaluations of RKF45.

For this problem, VRKF and RKFNC need almost the same number of function
evaluations. As before, this phenomenon is due to the rough part being confined
to a relatively small section of the domain. Clearly, RKF45 and RKFNC do not
have any trouble handling the roughness near the endpoints. This problem shows
that RKFNC should be used for such problems, but that not much is lost by
using VRKF.

Problem 3 is an example of a discontinuous initial value problem where we
have just a single trouble spot, i.e., at x = 0. We expect that the fixed order
methods would experience the greatest trouble in the case A = 0 when f is
discontinuous. As A increases, the singularity becomes less severe, and we expect
RKF45 and RKFNC to perform more efficiently. This expectation is borne out
by the results of Table VI. We see that in the case A = 0, VRKF is considerably
superior to RKFNC; in some cases, needing half as many function evaluations.
As A increases the difference becomes less apparent.

Differences in implementation can have a major effect on the performance of
a code on this problem, as discussed in some detail in [15]. An important point
brought out by this problem is that a code must have some restriction on its
ACM Transactions on Mathematical Software, Vol. 16, No. 3, September 1990.

A Variable Order Runge-Kutta Method . 221

allowable step-size change if it is to perform efficiently. Different step-size
restrictions can lead to dramatically different performance. However, since the
three codes we are comparing have exactly the same limits imposed on their step-
size change, we feel that our comparison is a fair one.

Finally, we consider Problem 4. Here we expect a large difference in the
performance of the fixed-order and variable order codes, since there are twenty
singularities in the range of integration instead of just one. The chances of a
fixed-order code picking a natural step sequence, suitable for passing through all
these singular points, is very small, so we do not expect RKF45 or RKFNC to
have abnormally good behavior. We see from Table VII that these expectations
are borne out in practice. VRKF is considerably more efficient than either
RKFNC or RKF45, with the gain in efficiency generally being about 20% over
RKFNC and 30% over RKF45.

5. CONCLUSIONS

In this paper we have developed a modified Runge-Kutta code that contains
imbedded formulas of all orders. This code is suitable for dealing with initial
value problems where the function f is changing rapidly in some part of the
region of integration. We were careful to derive a “high quality” formula that
would perform well on problems with smooth solutions. The results given in
Table III for the DETEST test set indicate that this goal has been achieved. At
least for these smooth problems, our code is superior to RKF45.

Problems with rough solutions are handled by noting that our Runge-Kutta
code computes f at several, reasonably uniformly spaced points in [x,, x~+~], and
trouble spots can be recognized early by looking for nonsmooth behavior in f.
This strategy allows us to quit early when a high-order solution may not be
acceptable or to accept a low-order solution when it is appropriate to do so.

Our belief is that this approach for dealing with nonsmooth solutions is a very
powerful and general one. We are at present seeking to extend this idea to the
case where the switching function is driven by a condition on y rather than on x.
However, we feel that, in common with other approaches for dealing with
discontinuous problems, our approach is in an embryonic stage. More understand-
ing, both computational and theoretical, of this problem class is needed. Despite
this, we believe that the results we have presented are sufficiently good to show
that this approach shows great promise and deserves further attention.

ACKNOWLEDGMENT

The authors are grateful to L. F. Shampine for many useful suggestions concern-
ing this paper.

REFERENCES
1. BETTIS, D. G. Efficient embedded Runge-Kutta methods. In Numerical Treatment of Differential

Equations: Proceedings Oberwolfach, 1976, Lecture Notes in Mathematics, 631. R. Bulirsch, R. D.
Grigorieff, and J. Shroder, Eds., Springer, Berlin, 1978, 9-18.

2. CARVER, M. B. Efficient integration over discontinuities in ordinary differential equation
simulation. Math. Comput. Simul. 20, 3 (1978), 190-196.

3. CASH, J. R. A block 6(4) Runge-Kutta formula for nonstiff initial value problems. ACM Trans.
Math. Softw. 15, 1 (1989), 15-28.

ACM Transactions on Mathematical Software, Vol. 16, No. 3, September 1990.

222 - J. FL Cash and A. H. Karp

4. CELLIER, F. E. Stiff computation: where to go? In Stiff Computation, R. C. Aiken, Ed., OUP,
1985,386-392.

5. DORMAND, J. R., AND PRINCE, P. J. A family of imbedded Runge-Kutta formulae. J. Comput.
Appl. Math. 6 (1980), 19-26.

6. ELLISON, D. Efficient automatic integration of ordinary differential equations with discontin-
uities. Moth. Comput. Simul. 23, 1 (1981), 12-20.

7. ENRIGHT, W. H., JACKSON, K. R., NORSETT, S. P., AND THOMSEN, P. G. Effective solution of
discontinuous IVPs using a Runge-Kutta formula pair with interpolants. Numerical Analysis
Rep. 113, Univ. of Manchester, Jan. 1986.

8. GEAR, C. W., AND ~STERBY, 0. Solving ordinary differential equations with discontinuities.
ACM Trans. Math. Sojtu~. 10 (1984), 23-44.

9. HAY, J. L., CROSBIE, R. E., AND CHAPLIN, R. I. Integration routines for systems with discon-
tinuities. Corn@. J. 17, 3 (1974), 275-278.

10. HEMKER, P. W. A numerical study of stiff two-point boundary value problems. Mathematical
Centre Tracts 80, Mathematisch Centrum, Amsterdam, 1977.

11. MANNSHARDT, R. One step methods of any order for ordinary differential equations with
discontinuous right hand sides. Numer. Math. 31, 2 (1978), 131-152.

12. O’REGAN, P. G. Step size adjustment at discontinuities for fourth order Runge-Kutta methods.
Comput. J. 13,4 (1970), 401-404.

13. SHAMPINE, L. F. Some practical Runge-Kutta formulas. Math. Comput. 46 (1986), 135.
14. SHAMPINE, L. F., AND GORDON, M. K. Solution of Ordinary Differential Equations--The Initial

Value Problem. W. H. Freeman, San Francisco, Calif., 1975.
15. SHAMPINE, L. F., GORDON, M. K., AND WISNIEWSKI, J. A. Variable order Runge-Kutta codes.

In Computational Techniques for Ordinary Differential Equations Conference (Univ. of Manches-
ter, 1978), I Gladwell and D. K. Sayers, Eds. Academic Press, London, 1980, 83-101.

16. SHAMPINE, L. F., AND WATTS, H. A. Subroutine RKF45. In Computer Methods for Mathematical
Computations. G. E. Forsythe, M. A. Malcolm, and C. B. Moler, Eds. Prentice-Hall, Englewood
Cliffs, N.J., 1977, 135-147.

17. VERNER, J. H. Families of imbedded Runge-Kutta methods. SIAM J. Numer. Anal. 16,5 (1979),
857-875.

Received November 1988; revised June 1989; accepted August 1989

ACM Transactions on Mathematical Software, Vol. 16, No. 3, September 1990.

