
SIAM J. MATRIX ANAL. APPL. c© 2005 Society for Industrial and Applied Mathematics
Vol. 26, No. 3, pp. 878–900

QRT: A QR-BASED TRIDIAGONALIZATION ALGORITHM FOR
NONSYMMETRIC MATRICES∗

ROGER B. SIDJE† AND K. BURRAGE†

Abstract. The stable similarity reduction of a nonsymmetric square matrix to tridiagonal form
has been a long-standing problem in numerical linear algebra. The biorthogonal Lanczos process
is in principle a candidate method for this task, but in practice it is confined to sparse matrices
and is restarted periodically because roundoff errors affect its three-term recurrence scheme and de-
grade the biorthogonality after a few steps. This adds to its vulnerability to serious breakdowns
or near-breakdowns, the handling of which involves recovery strategies such as the look-ahead tech-
nique, which needs a careful implementation to produce a block-tridiagonal form with unpredictable
block sizes. Other candidate methods, geared generally towards full matrices, rely on elementary
similarity transformations that are prone to numerical instabilities. Such concomitant difficulties
have hampered finding a satisfactory solution to the problem for either sparse or full matrices. This
study focuses primarily on full matrices. After outlining earlier tridiagonalization algorithms from
within a general framework, we present a new elimination technique combining orthogonal similarity
transformations that are stable. We also discuss heuristics to circumvent breakdowns. Applications
of this study include eigenvalue calculation and the approximation of matrix functions.

Key words. matrix reduction, nonsymmetric tridiagonalization, QR

AMS subject classifications. 15A23, 65F15, 65F25

DOI. 10.1137/040612476

1. Introduction. The tridiagonalization of a general square matrix represents
the most compact similarity reduction that can be computed directly. Attempting to
reduce further (diagonalization or bidiagonalization) implies the retrieval of eigenval-
ues, which can only be done iteratively in general, unless the order of the matrix is
under five. As yet, however, no stable tridiagonalization algorithm has been found. In
fact we know of only one finite, though unstable and impractical, tridiagonalization
algorithm due to George et al. [7].

While the biorthogonal Lanczos process is in principle a candidate tridiagonal-
ization algorithm, it is generally confined to sparse matrices because rounding errors
build up in its three-term recurrence scheme and degrade the biorthogonality after
a few steps, making it necessary to restart periodically (though the restart may also
be motivated by memory considerations in large-scale problems). The process is also
vulnerable to serious breakdowns or near-breakdowns, the handling of which involves
recovery strategies such as the look-ahead technique. But the look-ahead needs a
careful implementation, and furthermore it produces a block-tridiagonal form with
unpredictable block sizes.

Other candidate methods, geared generally towards full matrices, are not immune
to serious breakdowns or near-breakdowns either, relying on elementary similarity
transformations that are prone to numerical instabilities. Such concomitant difficulties
have hampered finding a satisfactory solution to the problem for either sparse or full
matrices. This study focuses primarily on nonsymmetric full matrices.

∗Received by the editors July 29, 2004; accepted for publication (in revised form) by L. Reichel
September 20, 2004; published electronically April 29, 2005.

http://www.siam.org/journals/simax/26-3/61247.html
†Department of Mathematics, Advanced Computational Modelling Centre, University of Queens-

land, Brisbane QLD 4072, Australia (rbs@maths.uq.edu.au, kb@maths.uq.edu.au).

878

A QR-BASED TRIDIAGONALIZATION ALGORITHM 879

Historically, interest in tridiagonalization stemmed primarily from its usefulness in
reducing the cost of the LR algorithm, which predated the QR algorithm for comput-
ing the eigenvalues of a general dense matrix. However, the quest for tridiagonalization
algorithms has been marred by numerical instabilities (see Wilkinson [19]). With a
tridiagonalization A = STS−1, computing an eigenpair (λ, y) of T gives the corre-
sponding eigenpair (λ, Sy) of A. Therefore an added drawback is that eigenvectors
can be contaminated when they are later retrieved by reapplying the transformations
at the source of the inaccuracies.

The discovery of the QR algorithm proved very popular because it works really
well, especially in conjunction with other enhancements for quick convergence (e.g.,
double shift) and accuracy (e.g., balancing). Tridiagonalization is unnecessary because
the tridiagonal form is not preserved. The QR algorithm uses instead a preliminary
orthogonal reduction to Hessenberg form for improved efficiency.

The inherent difficulties associated with tridiagonalization, together with the fact
that the QR algorithm already works so well, nearly halted interest in finding stable
algorithms for the reduction of a general matrix to strict tridiagonal form. But in-
terest was rekindled by Dax and Kaniel [3], who reported that theoretical predictions
are much more pessimistic than observed in practice (especially considering today’s
64-bit computer architecture). Further investigation was then carried out by Geist [6],
who added pivoting strategies and reported that instabilities arise at larger matrix
sizes. Unfortunately, the likelihood of instabilities means that practical implementa-
tions have to anticipate them in order to remain robust and competitive [5, 6, 10, 12].
Although consolidation techniques bring some benefits, their added complexity dis-
courages users, causing them to prefer the standard elegant QR approach with its
renowned stable foundation, albeit at higher cost.

Our own interest in the problem stemmed from the computation of matrix func-
tions [2, 15, 16]. Given a matrix A and a function f for which A is admissible
(i.e., f(A) is defined), the matrix function may be computed more economically as
f(A) = Sf(T)S−1, provided A = STS−1 is a preliminary reduction to condensed
form. The generic nature of the problem makes it compelling to have reduction algo-
rithms that are useful in applications other than eigenvalue estimation.

We shall first outline a general framework for tridiagonalization algorithms. We
subsequently present a new elimination technique combining orthogonal similarity
transformations that are stable. We then discuss recovery techniques when serious
breakdowns are encountered. We provide a roundoff error analysis. Finally, we present
some numerical results and give some concluding remarks.

2. General principles of tridiagonalization.

2.1. Elementary similarity transformations. We use R throughout our pre-
sentation to emphasize that complex arithmetic is avoided for real data, but with
minor adjustments the discussion applies to C as well. Let x = (x1, . . . , xn)T , y =
(y1, . . . , yn)T be vectors of R

n, and consider the problem of finding an invertible ma-
trix M ∈ R

n×n such that {
Mx = αe1,
yTM−1 = βeT1 ,

(2.1)

where α and β are scalars to be determined and ej is the jth column of the identity
matrix of appropriate size.

880 ROGER B. SIDJE AND K. BURRAGE

Lemma 2.1. Assume x1 �= 0, y1 �= 0, and yTx �= 0. Then the matrices

M1 ≡ I − 1

x1
xeT1 +

1

y1
e1y

T , M2 ≡ I − 1

x1
xeT1 − 1

y1
e1y

T

are solutions of (2.1), and the following hold:

1. M1x = yT x
y1

e1; M2x = −yT x
y1

e1.

2. yTM−1
1 = y1e

T
1 ; yTM−1

2 = −y1e
T
1 .

3. M−1
1 = I − e1e

T
1 − 1

yT x
x(y − 2y1e1)

T ; M−1
2 = I − e1e

T
1 − 1

yT x
xyT .

4. detM1 = yT x
y1x1

; detM2 = −detM1.

Proof. (1) can be verified by a straightforward multiplication; (2) and (3) follow
from the Sherman–Morrison formula; finally, (4) follows from expanding the determi-
nant.

Remarks.
1. In the same spirit as other elementary transformations such as Householder,

Gauss, or Gauss–Jordan, the transformation M zeroes a part of a vector.
However, in contrast to those transformations, it has the special feature that
its inverse M−1 is also a transformation targeted at a different vector.

2. Multiplying these transformations by a scalar, or more generally a diagonal
matrix, preserves their basic effect. The conditions x1 �= 0 and y1 �= 0 ensure
that M is defined. The condition yTx �= 0 ensures that M is invertible.

3. The inverse M−1 is in general a full matrix. This is, however, of limited
consequence because M−1 is not used in isolation. What matters is its action.
Notice also that if z ∈ R

n, then Mz and zTM−1 are computed using a dot
product and a gaxpy.

4. There are other matrices that satisfy Lemma 2.1. M1 is the matrix that is
often used in the literature (Geist [6] and Dongarra, Geist, and Romine [4]).
It can be written as M1 = NrN

−1
c , where Nr = I − 1

x1
xeT1 is the usual Gauss

transformation for the row and Nc = I − 1
y1
e1y

T is that for the column. As
we shall show in section 3, our new algorithm relies on another different type
of matrix that is constructed with improved stability.

For convenience in the rest of this section we shall simply consider one case,
say M ≡ M2. The next illustration is a motivation for what follows. Let a matrix
A ∈ R

n×n be partitioned in the form

A =

(
δ yT

x Z

)
,

where x, y ∈ R
n−1 for compatibility. If the assumptions of Lemma 2.1 are satisfied,

a transformation M of order n− 1 can be constructed such that

(
1 0
0 M

)(
δ yT

x Z

)(
1 0
0 M

)−1

=

⎛
⎜⎜⎜⎜⎝

δ β 0 · · · 0
α
0
...
0

MZM−1

⎞
⎟⎟⎟⎟⎠ .

The same process may be carried out on MZM−1 and so on. Upon termination,
we end up with a tridiagonal matrix that is similar to the original matrix A. The
method can also be used just to reduce the bandwidth of a matrix [12]. An overview
of the overall procedure is outlined in the following section.

A QR-BASED TRIDIAGONALIZATION ALGORITHM 881

2.2. Nonsymmetric tridiagonalization. Starting with A0 ≡ A and applying
the process above we obtain an updated matrix Ak−1 ≡ (ak−1

i,j) at stage k − 1 whose
pattern is

Ak−1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

δ1 β1

α1 δ2
. . . 0

. . .
. . . βk−2

αk−2 δk−1 βk−1

αk−1 ak−1
k,k ak−1

k,k+1 . . . ak−1
k,n

ak−1
k+1,k ak−1

k+1,k+1 . . . ak−1
k+1,n

0 ...
...

. . .
...

ak−1
n,k ak−1

n,k+1 . . . ak−1
n,n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

(
Tk−1 0

0 Ak−1
22

)
+ αk−1eke

T
k−1 + βk−1ek−1e

T
k .

The kth transformation is then constructed as

Mk =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ik 0
1 −mk+1,k+2 · · · −mk+1,n

−mk+2,k+1 1

0 ...
. . .

−mn,k+1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= I −mke
T
k+1 − ek+1m̃

T
k

where the multipliers are⎧⎪⎪⎪⎨
⎪⎪⎪⎩
mk = (0, . . . , 0︸ ︷︷ ︸

k+1

,mk+2,k+1, . . . ,mn,k+1)
T , mi,k+1 =

ak−1
i,k

ak−1
k+1,k

, i = k + 2, . . . , n

m̃k = (
︷ ︸︸ ︷
0, . . . , 0,mk+1,k+2, . . . ,mk+2,n)T , mk+1,j =

ak−1
k,j

ak−1
k,k+1

, j = k + 2, . . . , n.

(2.2)

The move from stage k − 1 to stage k is described by

Ak = MkAk−1M
−1
k .

The method will be of practical value if this update can be done cheaply, especially
without having to manipulate M−1 explicitly. A handy result to that effect is sum-
marized below, which shows how to update based on Zx/yTx.

Lemma 2.2. For the case M ≡ M2, the ij-entries of Z̃ = MZM−1 satisfy the
following identities.

Case i = 1, j = 1: z̃1,1 = yTZx
yT x

.

Case i = 1, j �= 1: z̃1,j = 1
y1

(yj
yTZx
yT x

− yTZej).

Case i �= 1, j = 1: z̃i,1 = xi
eT1 Zx
x1

− y1
eTi Zx
yT x

.

Case i �= 1, j �= 1: z̃i,j = zi,j − xi

x1
z1,j − yj(

eTi Zx
yT x

− xi

x1

eT1 Zx
yT x

).

882 ROGER B. SIDJE AND K. BURRAGE

Proof. The identities come after expanding z̃i,j = eTi MZM−1ej .

The method does not necessarily preserve the symmetry when the matrix is sym-
metric. This is of no importance since there are other techniques best suited for the
symmetric case. The major concerns are rather that the algorithm may break down
due to a zero pivot ak−1

k,k+1 or ak−1
k+1,k in the multipliers (2.2), or it may have near-

breakdowns due to small pivots that amplify the multipliers and introduce severe
roundoff errors.

There is an intimate connection with the nonsymmetric (also known as biorthog-
onal) Lanczos process, a full description of which can be found in Golub and Van
Loan [8, section 9.4.3]. The algorithm given above is equivalent to applying the
biorthogonal Lanczos process to A with the starting vectors u1 = e1 and v1 = e1.
In fact, any similarity tridiagonalization A = STS−1 can always be understood as
representing the biorthogonal Lanczos process with the starting vectors uT

1 = eT1 S
−1

and v1 = Se1. In exact arithmetic, therefore, all tridiagonalization algorithms seeded
with the same vectors are essentially equivalent, producing a tridiagonal matrix and
a transformation matrix that are identical to within diagonal scaling. This is called
the implicit-Q theorem, and its implications are described in detail by Parlett [14].
In particular, the desirable pairs (u1, v1) immune to breakdowns can be characterized
in terms of Hankel determinants. It is therefore hard to tell in advance whether a
pair is good, and, as with the Lanczos process, all tridiagonalization algorithms are
susceptible to breakdowns.

Numerically, however, algorithms implemented in finite arithmetic may behave
differently due to different stability properties. In the Lanczos process, for example,
rounding errors build up rapidly in the three-term recurrence scheme and degrade
the biorthogonality. It becomes unclear whether a breakdown or near-breakdown is
genuine or the consequence of inaccurate intermediate computations. It is also possible
for transformations of type M1 and M2 above to break down just because x1 = 0
and/or y1 = 0, or more likely they may have near-breakdowns at the neighborhood of
these critical points, corrupting the ongoing tridiagonalization. Clearly, although the
tridiagonalization is unique to within diagonal scaling once the starting vectors are
prescribed, there can be numerical differences between algorithms, as is the case in
other contexts such as in the QR decomposition which is unique but much different
if computed via Modified Gram–Schmidt (MGS) or via the Classical Gram–Schmidt
(CGS). Consider also QR vs. normal equations in least-squares problems or the
myriad ways to get to the unique solution of a linear system. The pivoting strategy
in the tridiagonalization algorithm of Geist [6] was motivated by such concerns. As
we shall see later, our primary contribution is that each step of our new algorithm is
nearly optimal in terms of minimizing rounding errors.

2.3. Related tridiagonalization algorithms. We will present our new algo-
rithm in section 3. The framework that we just outlined in section 2 builds on previous
works (see below). This framework bears a striking resemblance to an earlier work of
Bauer [1], who showed that a class of solutions to Lemma 2.1 can be represented in
the form M = I− τuvT and can therefore be understood as generalizations of House-
holder reflectors. (M1 and M2 above are rank-two additions and do not belong to this
class unless x = 0 or y = 0.) Bauer [1] used, however, a loose terminology, defining a
solution as “stable” if it exists in the neighborhood of x1 = 0 and y1 = 0 even though
it is unstable when yTx ≈ 0. His transformations are also set in C

n and involve
√
yTx

if need be, thus inducing complex arithmetic when yTx < 0. Intriguingly, his work is
not well publicized in the community and has gone unreferenced in other works. We

A QR-BASED TRIDIAGONALIZATION ALGORITHM 883

thank the anonymous referee who brought it to our attention. We believe that these
general principles provide a unified and coherent approach of describing tridiagonal-
ization algorithms. One such algorithm was described by La Budde [11], unwittingly
using precisely the generalized Householder reflectors of Bauer [1]. La Budde seemed
to think that his algorithm was breakdown-free. But this was promptly refuted by
Parlett [13] and Wang and Gregory [18]. We cite some of the other tridiagonalization
algorithms here.

ELR: This was introduced by Strachey and Francis [17]. It can be very unstable
and was abandoned soon after the discovery of the QR algorithm. It was revived
owing to the analysis and empirical results of Dax and Kaniel [3]. The algorithm first
uses the standard Hessenberg reduction of a general matrix and then uses elementary
similarity transformations to zero the terms in the upper part. One of the main
weaknesses of this work is that it did not include recovery strategies.

ATOTRI: Geist [6] added a pivoting strategy to the elimination procedure in an
attempt to stabilize the transformations. This proved successful in many practical
problems. However, since the similarity must be preserved, there is no guarantee that
the multipliers on both the column and the row will be bounded by unity. As we
indicated in remark 4 above, this approach amounts to using M1 but with pivoting.
That is, the elementary transformation is M̃ = Ñr(Ñc)

−1, where Ñr and Ñc use
Px and Py with P being a permutation matrix. Several multipliers can remain
unbounded should there be no permutation P that is simultaneously suitable for Ñr

and Ñc.

BHESS: This is one of the many attempts to improve stability by reducing to
a banded, as opposed to a tridiagonal, matrix. It is a variant of the elimination
algorithm with pivoting in which the least stable Gauss transformations are omitted
[10]. The drawback is that it produces a “trapezoidal” matrix as a compromise, i.e.,
an upper-Hessenberg matrix with an unfinished tridiagonalization. Thus the onus is
on subsequent computations to exploit its special structure.

3. The QR-based tridiagonalization algorithm (QRT). We now describe
our new tridiagonalization algorithm. It involves the following core ingredients. At
each stage, it first uses a stable orthogonal similarity transformation to reduce both
the column and the row. This reduces the column fully but leaves one trailing element
on the row. The algorithm then finds another similarity transformation to eliminate
that element. In the event of a serious breakdown, the algorithm restarts in an attempt
to bypass the critical point.

3.1. The algorithm. To describe the technical aspects of the algorithm in de-
tail, consider the partitioning

A =

(
δ yT

x Z

)
,(3.1)

and let

[x, y] = QR = Q

⎛
⎜⎜⎜⎜⎜⎝

α β
0 γ
0 0
...

...
0 0

⎞
⎟⎟⎟⎟⎟⎠

884 ROGER B. SIDJE AND K. BURRAGE

be the QR decomposition of the pair [x, y]. Now observe that

(
1 0
0 Q

)T (
δ yT

x Z

)(
1 0
0 Q

)
=

⎛
⎜⎜⎜⎜⎝

δ β γ 0 · · · 0
α
0
...
0

QTZQ

⎞
⎟⎟⎟⎟⎠ .

We therefore have a configuration where the only element to be eliminated is γ. All
the other unwanted elements have been eliminated in a stable manner by the Q factor.
Although orthogonal transformations have been used by other tridiagonalization al-
gorithms (e.g., for preliminary reduction to Hessenberg form), the two-sided approach
that we have just illustrated above is new, and our algorithm is the first method based
on this approach. This special feature forms the centerpiece of our contribution.

Now, provided γ is eliminated without significant loss of stability, we can antic-
ipate that the overall algorithm will remain stable for many practical problems. If
|γ| ≤ |β|, it is sufficient to use an elementary similarity transformation, as we saw
earlier. The following result gives a precise characterization of the elimination in ad-
vance. It also shows that it makes no difference whether we use [x, y] or [y, x] (i.e., the
QL variant), but we shall see later that a particular choice can improve the stability
of the next step.

Lemma 3.1 (stability condition). We have γ/β = tanθ(x, y), and so |γ/β| ≤ 1
is equivalent to |θ| ≤ π/4, i.e.,

| cosθ(x, y)| =
|xT y|

‖x‖2‖y‖2
≥

√
2

2
·(3.2)

Proof. The thin R factor in the QR decomposition of [x, y] is

(
α β
0 γ

)
=

(
‖x‖2 yTx/‖x‖2

0 ‖y − (yTx/xTx)x‖2

)
.

Evaluating the ratio γ/β gives the result.

While bounding the multiplier by unity assists safety, the process really depends
on the condition number of the similarity transformation, as our roundoff error analy-
sis will enlighten later. Hence for the case where |γ| > |β| > 0 it may still be possible
to apply a Gauss transformation if |γ/β| does not exceed some tolerance, as done by
Dax and Kaniel [3] and Geist [6], who reported that doing so is not always as bad
as it seems in practice. Ideally, we would like to only use an orthogonal similarity
transformation, but this is not typically possible, and our transformation attempts
to come as close as we can get to one. Since the elimination step of our algorithm
has only a single element to deal with, it is worth looking at the impact of a small
pivot in detail. Assume that k − 1 steps of the tridiagonalization process have been
performed, and the kth orthogonal similarity transformation has just been applied to
produce the following result:

A QR-BASED TRIDIAGONALIZATION ALGORITHM 885

AQ
k = QT

kAk−1Qk

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Tk−1

0
...
0

βk−1

0
...
0
0

0
...
0
0

0

0 · · · 0 αk−1 δ β γ 0 · · · 0
0 · · · 0 0 α p s g′k+3 · · · g′n
0 · · · 0 0 0 q t gk+3 · · · gn

0
0
...
0

f ′
k+3

...
f ′
n

fk+3

...
fn

H

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎝ T X 0

Y W G
0 F H

⎞
⎠ .(3.3)

To zero γ, the Gauss elimination matrix is

Sk =

⎛
⎝ Ik−1 0 0

0 S 0
0 0 In−k−2

⎞
⎠ ∈ R

n×n, S =

⎛
⎝ 1 0 0

0 1 μk

0 0 1

⎞
⎠ , μk =

γ

β
≡ μ.

Using (3.3) with the fact that SY = Y and XS−1 = X, we get

AS
k = SkA

Q
k S

−1
k =

⎛
⎝ T X 0

Y SWS−1 SG
0 FS−1 H

⎞
⎠ ,(3.4)

where

SWS−1 =

⎛
⎝ δ β 0

α μq + p −μ2q + μ(t− p) + s
0 q −μq + t

⎞
⎠ ,

SG =

⎛
⎝ 0 · · · 0

μgk+3 + g′k+3 · · · μgn + g′n
gk+3 · · · gn

⎞
⎠ ,

FS−1 =

⎛
⎝ 0 · · · 0

f ′
k+3 · · · f ′

n

−μf ′
k+3 + fk+3 · · · −μf ′

n + fn

⎞
⎠

T

.

This leads to a stable elimination of γ when |μ| = |γ/β| ≤ 1. Unfortunately, it shows
that the occurrence of a very large multiplier μ can affect a row in SG and a column
in FS−1. Therefore there is still a possibility of having roundoff errors that build up
due to very small pivots.

In order to attempt to mitigate these difficulties, we now consider a general elim-
ination procedure aimed at the case where |γ| > |β| > 0. Looking at (3.3), it can be
seen that we have obtained a structure where the upcoming elimination step can be
identified to the problem of reducing the smaller inner 3-by-3 block

W =

⎛
⎝ δ β γ

α p s
0 q t

⎞
⎠

886 ROGER B. SIDJE AND K. BURRAGE

to tridiagonal form while using a transformation matrix that will preserve the existing
zeros in the other surrounding blocks. It is not difficult to see that the corresponding
transformation matrix for this must therefore have its first column and first row both
equal to the first canonical basis vector (to within diagonal scaling). We can write

the smaller tridiagonalization problem S̃WS̃−1 = W ′ as⎛
⎝ 1 0 0

0 ξ1 ξ2
0 ξ3 ξ4

⎞
⎠

⎛
⎝ δ β γ

α p s
0 q t

⎞
⎠

⎛
⎝ 1 0 0

0 ξ1 ξ2
0 ξ2 ξ3

⎞
⎠

−1

=

⎛
⎝ δ β′ 0

α′ p′ s′

0 q′ t′

⎞
⎠ .(3.5)

It is interesting to note that this problem does not have a solution if β = 0, just as the
earlier Gauss elimination matrix was undefined in that case. This situation amounts
precisely to the serious breakdown case in the nonsymmetric Lanczos algorithm. In-
deed (3.5) is equivalent to applying the nonsymmetric Lanczos process to W with the
starting vectors u1 = e1 and v1 = e1. As theory predicts [5, 7, 14], the first iteration
can be taken only if we have nonzero Hankel determinants

Δ1 = uT
1 W

0v1 = 1 �= 0 and Δ2 =

∣∣∣∣uT
1 W

0v1 uT
1 W

1v1

uT
1 W

1v1 uT
1 W

2v1

∣∣∣∣ = αβ �= 0.

We will propose an heuristic for the breakdown later. Continuing for now with the
premise that |γ| > |β| > 0, it is easily seen that a solution to (3.5) is given (to within
diagonal scaling) by

S̃ =

⎛
⎝ 1 0 0

0 τ 1
0 0 1

⎞
⎠ , τ =

β

γ
< 1.

All the quantities involved so far are computed in a stable manner. Letting

S̃k =

⎛
⎝ Ik−1 0 0

0 S̃ 0
0 0 In−k−2

⎞
⎠ ∈ R

n×n(3.6)

and using (3.3) once more with the fact that S̃X = X and Y S̃−1 = Y , we get

AS̃
k = S̃kA

Q
k S̃

−1
k =

⎛
⎜⎝

T Y 0

X S̃WS̃−1 S̃G

0 FS̃−1 H

⎞
⎟⎠ .(3.7)

The appearance of S̃−1 involves a risky division by τ < 1 in the computations. This
may still introduce numerical difficulties, but the potential of growth is basically
confined to FS̃−1, and we now show how to lessen its extent. Direct calculation gives

S̃WS̃−1 =

⎛
⎝ δ γ 0

τα q/τ + p −q/τ − p + τs + t
0 q/τ −q/τ + t

⎞
⎠ ,(3.8)

S̃G =

⎛
⎝ 0 · · · 0

τg′k+3 + gk+3 · · · τg′n + gn
gk+3 · · · gn

⎞
⎠ ,(3.9)

FS̃−1 =

⎛
⎝ 0 · · · 0

f ′
k+3/τ · · · f ′

n/τ
−f ′

k+3/τ + fk+3 · · · −f ′
n/τ + fn

⎞
⎠

T

.(3.10)

A QR-BASED TRIDIAGONALIZATION ALGORITHM 887

This suggests that the algorithm can remain reasonably robust if we can bound most
of f ′

i/τ , i = k + 3, . . . , n. To do so, consider the earlier partitioning (3.1), and let

[x, y, Zx] = Q̃

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

α β ρ
0 γ σ
0 0 ν
0 0 0
...

...
...

0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

be the QR decomposition of the triplet [x, y, Zx]. Now observe that

(
1 0
0 Q̃

)T (
δ yT

x Z

)(
1 0
0 Q̃

)
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

δ β γ 0 · · · 0
α p × × · · · ×
0 q × × · · · ×
0 r × × · · · ×
0 0 × × · · · ×
...

...
...

...
. . .

...
0 0 × × · · · ×

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

with p = ρ/α, q = σ/α, r = ν/α. Indeed this comes from the fact that Q̃TZQ̃e1 =

Q̃TZx/‖x‖2. Applying this process at step k, we will therefore obtain a structure of
the form

AQ̃
k = Q̃T

kAk−1Q̃k(3.11)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Tk−1

0
...
0

βk−1

0
...
0
0

0
...
0
0

0

0 · · · 0 αk−1 δ β γ 0 · · · 0
0 · · · 0 0 α p s g′k+3 · · · g′n
0 · · · 0 0 0 q t gk+3 · · · gn

0
0
0
...
0

r
0
...
0

fk+3

.

...
fn

H

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

If |r| ≤ |q|, the term r can further be annihilated in another safe preliminary step
before zeroing γ. Overall, this reorganization shows that we can significantly restrict
the side effects of a large multiplier when zeroing γ in the elimination stage (3.7).
Regardless the size of the problem, there can be at most six vulnerable entries at any
one time: p, q, r, s, t, fk+3. These are the entries where q/τ or r/τ come into play.
It becomes possible to monitor them before opting for a breakdown and a recovery
method. The risky entries reduce to four if |r| ≤ |q| and the term r is annihilated.
The downside of this approach is the extra cost of Zx, but this might be preferable to
other alternatives such as restarting from scratch. Moreover, the zeros that have been
introduced can be exploited at the next step in a production code. If large multipliers
reappear, we can alternate between the row variant and the column variant by taking
the QR decomposition of [y, x, ZT y] in an attempt to diffuse the side effects evenly.

888 ROGER B. SIDJE AND K. BURRAGE

However, the trade-off now is that it brings S̃−1 in the transformation matrix. When
a precise distinction is necessary, we shall refer to the QR of [x, y] (or [y, x]) as the
xy-QR (or yx-QR) step and to the augmented QR of [x, y, Zx] (or [y, x, ZT y]) as the
xyz-QR (or yxz-QR) step. A reference to the QR step means either of these cases.
This provides a similar distinction as with the ijk forms of loop notation.

The term q/τ , which occurs in (3.8), and the term r/τ , which will now occur in
(3.10), satisfy

q

τ
=

σ

α

γ

β
,

r

τ
=

ν

α

γ

β
,

and this shows that they depend on the common quantity ω = γ/αβ. Different values
arise if we iterate with the xy- or yx-QR step. Let ωxy denote the value from using
the xy-QR step and ωyx that of the yx-QR step. A similar reasoning as in the proof
of Lemma 3.1 shows that ω2

xy/ω
2
yx = ‖x‖2

2/‖y‖2
2. Hence, of the pairs [x, y] and [y, x],

the smallest ω comes from the pair where the first vector is of smaller norm. This is
how we decide whether to take a xy- or yx-QR step in practice.

In general, the unified quantity ω = γ/αβ highlights the relative importance
of the parameters of interest in a remarkable way. If γ ≈ 0, the matrix obtained
after the orthogonal similarity transformation (3.3) is already tridiagonal, and so the
elimination step is unnecessary. If α ≈ 0, an invariant subspace has been found, and
the process can still be continued (e.g., by pivoting to eliminate β safely, also known
as deflation), but the user may actually prefer an early termination. If β ≈ 0, and αβ
is still small compared to γ (i.e., |ω|−1 = |αβ/γ|
 1), there is a serious breakdown
needing a full recovery method, as we shall see later. It appears therefore that, when
the algorithm does continue, it does so under favorable conditions. We can choose to
avoid near-breakdowns to limit the risk of introducing severe roundoff errors.

Notice that the simpler Gauss elimination matrix is a particular case of this
general procedure. We use the Gauss elimination directly when |γ| ≤ |β|, but it

can be recovered here with the diagonal scaling diag(1, γ
β , 1)S̃. Also note that the

transformation matrix of other solutions to (3.5) need not be necessarily triangular,
though similar numerical issues arise.

For the sake of completeness, we mention another simpler but ad hoc measure
which is reminiscent of diagonal scaling and thus comes with reservations. An imple-
mentation can scale (3.4) by μ−1 to avoid using μ, thereby preventing large numbers
from being introduced as the tridiagonalization progresses. At the kth step, this
scaling is summarized as

μ−1
k · · ·μ−1

1 Ak = μ−1
k SkQ

T
k (· · · (μ−1

1 S1Q
T
1 AQ1S

−1
1) · · ·)QkS

−1
k .

Of course, the scaling factor is unity in those cases where the pivot is sufficiently
large. After accumulating the scaling factors, applications can then scale back their
end result when/if it is necessary to do so. A similar reasoning can be made with
(3.7) using τ as scaling factors. In both cases, the danger is that not only entries of
the working matrix can become quite small but that the cumulative effect of the large
multipliers reappears again when unscaling the final result, suggesting that this way
of doing so might not be trustworthy in general.

3.2. Breakdown and recovery. Focusing now on the more promising algo-
rithm described earlier, it is worth noting that excessively small values of τ are often
indicative of a serious breakdown requiring one to resort to recovery methods. Look-
ing at τ alone can be too pessimistic, however. As our earlier analysis showed, the

A QR-BASED TRIDIAGONALIZATION ALGORITHM 889

compound quantity ω = γ/αβ can provide valuable insight. There are cases where a
so-called happy breakdown may arise as well. Such cases are detected if α ≈ 0 (case
of invariant subspace) or γ ≈ 0 (case when the elimination step is unnecessary). The
case of a serious breakdown arises when β ≈ 0 after the current xy-QR step, with
additionally |ω|−1 = |αβ/γ|
 1 so that it remains unsafe to use the augmented
xyz-QR step, as discussed earlier. In the Lanczos algorithm, the look-ahead tech-
nique is a popular recovery strategy for such breakdowns. However, it introduces a
block-tridiagonal structure with unpredictable block sizes.

To maintain the strict tridiagonal form, it is, unfortunately, necessary to restart.
This is necessary because it is not generally possible to avoid breakdowns locally. Local
attempts to avoid the division by zero destroy the existing tridiagonal form. (That is
why the look-ahead is the other alternative.) Dealing with breakdowns remains one
of the unsatisfactory aspects of tridiagonalization algorithms. Avenues are inhibited
by the tight connection to Hankel determinants and the implicit-Q theorem, as we
alluded to earlier. In [19], Wilkinson suggested restarting from scratch with NAN−1

for some N in the hope that failure will be avoided in the modified matrix. Similarly,
one can use different starting vectors, as we now describe.

We presented the QRT algorithm using u = e1 and v = e1 as starting vectors.
Other starting vectors can be used by just applying the algorithm to the augmented
matrix (

0 uT

v A

)
.

This is tridiagonalized by the QRT algorithm as

(
0 uT

v A

)
=

(
1 0
0 P

)−1 (
0 (uT v/‖v‖2)e

T
1

‖v‖2e1 T

)(
1 0
0 P

)

so that A = P−1TP , with the first column of P−1 and the first row of P now

P−1e1 =
v

‖v‖2
, eT1 P =

‖v‖2

uT v
uT .

It is always possible to choose u and v that guarantee a termination of the algo-
rithm [7]. In general, however, whether a choice is good is not known in advance. But
an interesting aspect of the principle above is that it can also be used as a recovery
method. Indeed, assuming a breakdown happens at the kth step and augmenting the
unfinished tridiagonalization Ak−1, we get

(
0 uT

v Ak−1

)
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 u1 u2 · · · uk−1 uk uk+1 · · · un

v1 δ1 β1

v2 α1 δ2
. . . 0

...
. . .

. . . βk−2

vk−1 αk−2 δk−1 βk−1

vk αk−1 ak−1
k,k ak−1

k,k+1 . . . ak−1
k,n

vk+1 ak−1
k+1,k ak−1

k+1,k+1 . . . ak−1
k+1,n

... 0 ...
...

. . .
...

vn ak−1
n,k ak−1

n,k+1 . . . ak−1
n,n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

890 ROGER B. SIDJE AND K. BURRAGE

As we apply elimination steps to this augmented matrix, the existing tridiagonal
form is, unfortunately, destroyed. But if we take u = (1, r, 0, . . . , 0)T and v = e1 or,
alternatively, u = e1 and v = (1, r, 0, . . . , 0)T , where r is a random number, we obtain
what is sometimes termed “bulge chase” (see, e.g., Geist [6]). The advantage here
comes from the fact that only one term has to be dealt with as the bulge is chased
down to regain the tridiagonal form. This is a low-cost procedure taking O(k) flops.
However, in [14, section 13.3], Parlett warned that this simple recovery technique is
not good enough. And indeed we observed in practice that it is not always effective in
remedying breakdowns. We observed improvements when u and v had several nonzero
terms, but this comes at extra cost. We could not draw from our extensive exper-
iments a default number of nonzero terms suitable in all situations. We also noted
that the bulge chase was excluded from the final Fortran code of Dongarra, Geist,
and Romine [4], which was based on the work of Geist [6]. Consequently, our own
implementation simply restarts by augmenting A with full vectors with components
randomly chosen from a uniform distribution in the interval (0, 1). We allowed only
one restart in the experiments, but, as we noted before, repeatedly trying full vectors
ultimately yields termination, although stability may suffer in the more difficult cases.

To detect breakdowns, we do not rely on the τ coefficients alone, as they are
transient and can be too pessimistic. We instead rely on the condition number
κ∞(P) = ‖P‖∞‖P−1‖∞ that can be updated incrementally from the computations.
This allows us to account for the compound effects of near-breakdowns as well. In
our experiments we took εbrk = 10−10 as the tolerance parameter for the breakdown;
i.e., breakdown was assumed when the reciprocal of the condition number satisfies
1/κ∞(P) ≤ εbrk.

3.3. Roundoff error analysis. An error analysis of the elimination method in
full was made by Dax and Kaniel [3]. Since the elimination step of our algorithm
involves only a single element, we wish to carry out a comparative study. We leave
aside the orthogonal similarity transformations. This is not much different from the
approach in [3], which omitted the preliminary reduction to Hessenberg form since
there are no numerical difficulties associated with orthogonal transformations. We
assume the worst-case scenario of having used the augmented Q̃ factor at every step.
If we include roundoff errors in (3.7), the exact formulation of the kth elimination
step becomes

AS̃
k = S̃kA

Q̃
k S̃

−1
k + Ẽk(3.12)

in which

S̃k = I + (τk − 1)ek+1e
T
k+1 + ek+1e

T
k+2,

S̃−1
k = I +

(
1

τk
− 1

)
ek+1e

T
k+1 −

1

τk
ek+1e

T
k+2,

Ẽk = εkpqre
T
k+1 + εkstfe

T
k+2 + ek+1(ε

k
αg)

T .

S̃k is the elimination matrix (3.6), and Ẽk denotes the error matrix with nonzero

entries due to roundoff errors only on those positions affected by S̃k. We write Ẽk

using three n-vectors for convenience. As the updating formulas (3.8)–(3.11) show,
εkpqr has only three nonzero components induced by the change of p, q, and r; εkstf has
only three nonzero components induced by the change of s, t, and fk+3; and, finally,

A QR-BASED TRIDIAGONALIZATION ALGORITHM 891

εkαg has n−k−1 nonzero components induced by the change of α, g′k+3, . . . , g
′
n. Hence

we have

eTi ε
k
pqr = 0 = eTi ε

k
stf if i �∈ {k+1, k+2, k+3}; (εkαg)

T ej = 0 if j �∈ {k, k+3, . . . , n}.

Although all contributions are included in the analysis, εkαg is in principle unessential
since it is only induced by multiplicative terms with τk and by construction τk < 1.
From (3.12) the final computed result satisfies

AS̃
n−2 = S̃n−2 · · · S̃1A

Q̃
1 S̃

−1
1 · · · S̃−1

n−2 − Ẽ,

Ẽ = Ẽn−2 + S̃n−2Ẽn−3S̃
−1
n−2 +

n−4∑
k=1

S̃n−2 · · · S̃k+1ẼkS̃
−1
k+1 · · · S̃

−1
n−2.

Owing to the special pattern of Ẽk, we get

Ẽ = Ẽn−2 + S̃n−2Ẽn−3S̃
−1
n−2 +

n−4∑
k=1

(S̃k+1 + (τk+2 − 1)ek+3e
T
k+3)ẼkS̃

−1
k+1 · · · S̃

−1
n−2,

and using the fact that ‖S̃k‖∞ = 1 + |τk| ≤ 2, ‖S̃−1
k ‖∞ = 2/|τk|, we obtain

‖Ẽ‖∞ ≤ ‖Ẽn−2‖∞ +

n−3∑
k=1

2‖Ẽk‖∞‖S̃−1
k+1‖∞ · · · ‖S̃−1

n−2‖∞

≤ 2(n− 2) max
1≤k≤n−2

(
2

|τk|

)n−k−2

max
1≤k≤n−2

‖Ẽk‖∞.(3.13)

The theoretical upper bound is still pessimistic, however, and the usual trade-off
between speed and accuracy appears. Placing a restrictive constraint on the multi-
pliers (e.g., τk ≈ 1) implies a growth factor, as in Gaussian elimination with partial
pivoting, but a potential risk here is that recovery techniques may be triggered more
often than necessary. However, this can largely be offset by the payoff from using
the tridiagonal representation depending of the application. For example, Geist [6]
reported a 300-by-300 eigenvalue computation on a Sun 3/280 which took 2305.14 sec-
onds for the Hessenberg HQR method and 23.84 seconds for the tridiagonal TLR
method, i.e., a hundred-fold speedup.

Further analysis suggests that our method should in general be numerically prefer-
able over other tridiagonalization methods. As stated in Golub and Van Loan
[8, eq. (7.1.11)], any similarity transformation MZM−1 is susceptible to roundoff
errors, roughly εκ2(M)‖Z‖2, where ε is the machine precision and κ2(M) =
‖M‖2‖M−1‖2 is the condition number. This heuristic bound implies that the safest
transformation is that for which κ2(M) is minimum. Let M and N be transfor-
mation matrices that satisfy (2.1). There exists an invertible matrix X such that
N = XM . It follows from (2.1) that Xe1 = e1 and eT1 X

−1 = eT1 (to within diago-
nal scaling). Take M = MQRT from our QRT algorithm. With the earlier notation
it can be written as MQRT = SQT , where [x, y] = QR and S = I + μe1e

T
2 or

S = I + (τ − 1)e1e
T
1 + e1e

T
2 = diag(μ−1, 1, . . . , 1)(I + μe1e

T
2). Minimizing κ2(N) is

equivalent to minimizing κ2(XSQT) = κ2(XS) over all matrices X with Xe1 = e1

and eT1 X
−1 = eT1 . Consider now the QR factorization given by X = Y U , where Y

is orthogonal and U is upper-triangular with Ue1 = e1 and eT1 U = eT1 . The problem

892 ROGER B. SIDJE AND K. BURRAGE

becomes that of minimizing κ2(US) over all such U . The minimum is attained when
US = I or, more generally, when US = Π with Π orthonormal. The case US = I
implies that U = S−1, which is, however, inconsistent with the requirement that
eT1 U = eT1 . Due to the particular structures of U and S, an effective choice has U
close to the identity matrix. The case US = Π implies that ΠTUS = I, which amounts
to the first case. We do not need an exact minimization of a heuristic bound. But
this analysis hints at the near-optimality of our scheme with respect to minimizing
roundoff errors.

The following example will illustrate the point. Let x = (−1, 1, . . . , (−1)n)T ,
y = (1, 1, . . . , 1)T of length n, with n odd to make xT y = 1. Computing M = M2

from Lemma 2.1 and S from the QRT scheme, we obtain

M =

⎛
⎜⎜⎜⎜⎜⎜⎝

−1 −1 −1 · · · −1
1 1 0 · · · 0

−1 0
. . .

. . .
...

...
...

. . . 1 0
(−1)n 0 · · · 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

, S =

⎛
⎜⎜⎜⎜⎜⎝

1√
n2−1

1 0 · · · 0

0 1 0 · · · 0
...

. . .
. . .

. . .
...

0 · · · 0 1 0
0 · · · 0 0 1

⎞
⎟⎟⎟⎟⎟⎠ .

Hence M is stable in the Gauss sense since all its multipliers are bounded by unity.
Lemma 3.1 stated the corresponding stability condition in the QRT context

| cosθ(x, y)| =
|xT y|

‖x‖2‖y‖2
=

1

n
�≥

√
2

2
= 0.707.

It would appear that the QRT step would not be stable in the Gauss sense, whereas
methods from Lemma 2.1 would be. But for n = 5 we get

10 ≈ κ2(S) < κ2(M) ≈ 14,

and this shows that the QRT step is preferable, as far as the similarity transformation
is concerned. Larger n gave similar observations with wider differences. For example
n = 101 gave κ2(S) ≈ 202, whereas κ2(M) ≈ 103.

3.4. Pseudocode. We summarize the ideas discussed so far into a pseudocode
that can be translated into a computer program. The tridiagonalization occurs in
Algorithm 2 with Algorithm 1 being the driver.

Algorithm 1: Compute [T, P, Pinv, rcond] = QRT(A)
[T, P, Pinv, rcond] := QRTRI(A) ;
{Attempt a recovery method if there is a breakdown}
if rcond ≤ εbrk then

Choose random u and v ;

[T, P, Pinv, rcond] := QRTRI

((
0 uT

v A

))
;

T := T (2 : n + 1, 2 : n + 1) ;
P := P (2 : n + 1, 2 : n + 1) ;
Pinv := Pinv(2 : n + 1, 2 : n + 1) ;

endif

Note in the pseudocode that a quantity θ ≈ 0 if |θ| ≤ εzero. Our MATLAB
implementation used the drop tolerance εzero = 10−7. Note also that each iteration
of the pseudocode begins by deciding whether to take a xy- or yx-QR step. Any
subsequent action then uses the appropriate indices, depending on the step retained.

A QR-BASED TRIDIAGONALIZATION ALGORITHM 893

Details are omitted in the pseudocode for readability. When there is breakdown, the
control is passed back to the driver routine to possibly initiate a recovery attempt.
An implementation can choose to exit with the last good values before the breakdown
in case the user wants them, albeit they represent a partial decomposition.

Algorithm 2: Compute [T, P, Pinv, rcond] = QRTRI(A)
P := I ; Pinv := I ; T := A ;
for k := 1 : n− 2 do

x := T (k + 1 : n, k) ; y := T (k, k + 1 : n)T ;
{Decide whether to use [x, y] or [y, x]}
if ‖x‖2 ≤ ‖y‖2 then

[Q,R] := QR(x, y) ;
else

[Q,R] := QR(y, x) ;
endif
α = R(1, 1) ; β = R(1, 2) ; γ = R(2, 2) ;
{Use the simple xy- or yx-QR step if no xyz- or yxz-QR step is needed}
if α ≈ 0 or γ ≈ 0 or |β| ≥ |γ| then

T :=

(
Ik 0
0 QT

)
T

(
Ik 0
0 Q

)
; P :=

(
Ik 0
0 QT

)
P ; Pinv := Pinv

(
Ik 0
0 Q

)
endif
{Move on to the next step if no elimination is necessary}
if γ ≈ 0 continue ;
{Deflation when we have an invariant subspace}
if α ≈ 0 then

• apply Gauss elimination with pivoting to eliminate γ or β in T
• update the transformation matrix P and its inverse Pinv

continue ;
endif
{Use the simple Gauss elimination if possible}
if |β| ≥ |γ| then

• apply Gauss elimination to eliminate γ in T
• update the transformation matrix P and its inverse Pinv

continue ;
endif
{Use the xyz- or yxz-QR elimination if possible}
if β ≈ 0 then

{serious breakdown}
set rcond := 0 ;

else
• apply the extended xyz- or yxz-QR step
• eliminate the r term if possible in T — see the discussion following (3.11)
• eliminate γ in T
• update the transformation matrix P and its inverse Pinv

• compute rcond := 1/‖P‖∞‖Pinv‖∞, the reciprocal of the condition number
endif
{Exit if there is a breakdown}
if rcond ≤ εbrk return ;

endfor

3.5. A breakdown-free variant. We outline here a modified variant useful
in certain applications. This variant avoids serious breakdowns at the trade-off of
not producing a strict tridiagonal form. Consequently, we call it the breakdown-free
QRT (BFQRT). There are applications where a strict tridiagonal form (or a form with

894 ROGER B. SIDJE AND K. BURRAGE

bandwidth fourth or more) is not essential. But having as many zeros as possible is key
to efficiency because floating-point operations involving zero elements can be avoided.
This can be seen, for example, in Nikolajsen [12], where skipping null elements in the
Laguerre eigensolver resulted in a marked speedup over the QR algorithm.

The BFQRT variant consists of omitting the elimination steps that would nor-
mally trigger recovery attempts. A similar strategy is used in BHESS [10] and Niko-
lajsen [12]. However, their approach gives a “trapezoidal” matrix of increasing band-
width, whereas our approach reduces the density further by retaining a tridiagonal
matrix but with occasional rows on the upper part. These rows appear where the
elimination steps have not been applied. The pseudocode for this looks similar to
Algorithm 2, except that we use only the xy- or xyz-QR steps and do not alternate
with the yx- or yxz-QR steps. Another difference is that if β ≈ 0, we just move on
to the next step. We also use the updated rcond merely to decide whether to revert
to the last good values before proceeding with the next step. Below are examples of
patterns that BFQRT may produce in a 7-by-7 case:

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

× × × × × × ×
× × ×

× × × × × ×
× × ×

× × ×
× × ×

× ×

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

× ×
× × × × × × ×

× × ×
× × ×

× × ×
× × ×

× ×

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Note that in practice it is not necessary to apply a xy-QR step on rows set to be filled
again. We can use a simple Hessenberg step there and move on to the next iteration.

4. Numerical experiments. We report some numerical examples using an ex-
ploratory MATLAB implementation on a Sun4u Sparc Workstation. Given a matrix
A, we apply the QRT algorithm to compute T = PAP−1, where T is tridiagonal and
P is the similarity transformation matrix.

We compare our method with the ATOTRI Fortran code of Dongarra, Geist, and
Romine [4] and Geist [6]. To this end, we implemented a MEX interface to invoke
the native Fortran code of ATOTRI from within MATLAB. The comparison is based
therefore on their original Fortran implementation available in the TOMS directory
at netlib.org.

In the first set of examples, we also use [L,U] = lu(A) in MATLAB to compute
the LU decomposition with partial pivoting. We report ‖U‖∞, which gives insight into
the growth factor that would arise with the Gauss elimination procedure itself. The
following statistics (as computed by MATLAB) are given to assist in the evaluation
of the results:

n order of the matrix A
Xeig eigenvectors of A, as computed by [X,D] = eig(A) in MATLAB
‖U‖∞ L-∞ norm, indicator of the growth in the LU decomposition of A
κ2(P) condition number of the matrix P , κ2(P) = ‖P‖2‖P−1‖2

4.1. GFPP examples. Results are shown on Table 1. The matrices are gener-
ated using the function called gfpp in Higham’s testsuite [9]. This function generates
a matrix that has the effect of attaining the maximal growth factor in Gaussian elim-
ination with partial pivoting. We use gfpp(n, c), which sets all the multipliers to c
and gives a growth factor (1 + c)n−1.

A QR-BASED TRIDIAGONALIZATION ALGORITHM 895

Table 1

GFPP examples.

GFPP Problem ‖A‖2 κ2(Xeig) κ2(P)
‖A−P−1TP‖2

‖A‖2
‖U‖∞ ‖A−LU‖2

‖A‖2

n = 50, c = 0.3 1.10E+01 3.42E+00 E+01 E−15 E+05 E−12
n = 100, c = 0.3 2.05E+01 4.74E+00 E+01 E−15 E+11 E−06
n = 200, c = 0.3 1.04E+07 1.06E+07 E+02 E−15 E+22 E−02

Although this problem clearly affects the LU algorithm as n increases, it is handled
well by the tridiagonalization method. This supports the observation made by Dax
and Kaniel [3] that tridiagonalization methods are not necessarily doomed to fail on
practical problems. In the same spirit that LU can fail but is widely used nonetheless,
cheap elimination methods can be tried first before resorting to other robust (but
expensive) alternatives to compute eigenvalues.

4.2. EigTool examples. Results appear on Table 2 and Figure 1. Most of the
matrices in the EigTool set [20] are notoriously pathological. They are specifically
aimed at showcasing the importance of pseudospectra analysis, and so each eigen-
system is very sensitive to small perturbations. We refer the reader to EigTool [20]
for further details about these problems. The QRT tridiagonalization is successful
for most cases but suffers from serious breakdowns in some cases. The column with
label err gives an error exit status. A value of 0 means that the algorithm completed
all the steps. A value in the form (k1)k2 means that the algorithm encountered a
serious breakdown at the k1th step and the conservative recovery technique discussed
earlier in section 3.2 was applied. A null k2 means that the recovery was successful.
Otherwise it means that the recovery itself failed at the k2th step. We allocated a
similar column for ATOTRI, but as our analysis will show, its error exit status is not
entirely reliable.

Table 2

EigTool examples.

QRT ATOTRI

Problem ‖A‖2 κ2(Xeig) err κ2(P)
‖A−P−1TP‖2

‖A‖2
err κ2(P)

‖A−P−1TP‖2
‖A‖2

hatano 50x50 2.93E+00 E+07 0 1 0 0 1 0
demmel 50x50 3.19E+04 Inf 0 E+04 E−15 0 E+08 E−13
gallery3 3x3 8.18E+02 E+03 0 7.55 E−16 0 E+01 E−17
gallery5 5x5 1.01E+05 E+11 0 E+07 E−15 0 E+08 E−13
godunov 7x7 4.32E+03 E+14 0 E+03 E−14 0 E+04 E−15
convdiff 49x49 1.02E+04 E+12 0 E+04 E−15 0 E+04 E−14
chebspec 49x49 1.32E+03 E+13 0 E+02 E−13 0 E+03 E−13
kahan 50x50 5.76E+00 E+12 0 E+01 E−15 0 E+02 E−15
sparserandom 50x50 3.28E+00 E+01 0 E+04 E−11 0 E+04 E−11
random 50x50 1.95E+00 E+01 0 E+03 E−14 0 E+02 E−13
boeing 55x55 1.69E+07 E+06 (17)0 E+07 E−15 − −− −−
twisted 50x50 2.74E+00 E+05 (37)0 E+07 E−11 0 E+10 E−06
frank 50x50 6.73E+02 E+10 (7)0 E+07 E−12 0 E+11 E−02
grcar 50x50 3.23E+00 E+08 (15)0 E+08 E−09 0 E+14 E−02
companion 50x50 4.59E+64 E+63 (1)0 E+04 E−16 − −− −−
markov 55x55 1.18E+00 E+02 (26)0 E+04 E−10 0 E+10 E−03
randomtri 50x50 1.64E+00 E+18 (25)25 E+07 E−10 − E+47 E+16
riffle 50x50 2.36E+00 E+44 (8)11 E+08 E−10 − E+35 E+05

896 ROGER B. SIDJE AND K. BURRAGE

0 10 20 30 40 50
10

0

10
2

10
4

10
6

10
8

10
10

Iterations

co
nd

2(P
)

demmel 50x50

QRT
ATOTRI

0 10 20 30 40 50
10

0

10
5

10
10

10
15

10
20

Iterations

co
nd

2(P
)

frank 50x50

QRT
ATOTRI

0 10 20 30 40 50
10

0

10
5

10
10

10
15

10
20

Iterations

co
nd

2(P
)

grcar 50x50

QRT
ATOTRI

0 10 20 30 40 50 60
10

0

10
5

10
10

10
15

Iterations

co
nd

2(P
)

markov 55x55

QRT
ATOTRI

0 10 20 30 40 50
10

1

10
2

10
3

10
4

Iterations

co
nd

2(P
)

random 50x50

QRT
ATOTRI

0 10 20 30 40 50
10

0

10
10

10
20

10
30

10
40

10
50

Iterations

co
nd

2(P
)

randomtri 50x50

QRT
ATOTRI

Fig. 1. History of the condition number of the transformation matrix, cond2(Pk) =
‖Pk‖2‖P−1

k
‖2, during the reduction of a few representative matrices from EigTool.

Recall that ‖A−P−1TP‖2

‖A‖2
is bound to have rounding errors of order εκ2(P), where

ε is the machine precision, which is about 10−16 on the Sun4u Sparc Workstation
where we conduct the experiments. We can make the following main observations:

• The hatano matrix is already tridiagonal and should be left untouched because
the methods used u = e1 and v = e1 as default starting vectors. Thus this
matrix served as an identity test for the codes.

• It is clear from the table that QRT is more accurate than ATOTRI in gen-

A QR-BASED TRIDIAGONALIZATION ALGORITHM 897

eral. The plots in Figure 1 depict the history of the condition number of the
transformation matrix in various examples. There are occasional cases such
as random where ATOTRI looks better. But even in those cases the relative
error of QRT is as good as or better than ATOTRI, as seen on the main
results on Table 2. In general, therefore, the transformation matrix produced
by QRT tends to have the smallest condition number, leading to a smaller
relative error. This agrees with the roundoff error analysis.

• The behavior of ATOTRI is disturbing in a number of pathological cases
where its computed solution is seriously contaminated by roundoff errors,
but the user is not given any warning. We use a dash (−) on Table 2 to
draw the attention of the reader in those cases. The code actually returns
an error exit status err of 0 that can mislead the user into thinking that the
result is reliable when in fact there has been a total loss of accuracy. The
companion example gave huge values. Another dramatic example was the
boeing matrix that gave a transformation matrix for which the singular value
decomposition to compute its condition number failed. Other examples are
riffle and randomtri. As the history of randomtri in Figure 1 shows, QRT
stopped at some point after reporting that its recovery attempt failed. But
ATOTRI continued with meaningless data. Looking at the Fortran code of
ATOTRI, we noted that it does not account for near-breakdowns. It detects
the breakdown only if the inner product xT y = 0. Other ramifications can be
seen in the frank example: the condition number grows exaggeratedly before
decaying, with the effect of corrupting the rest of the computations in a way
not made apparent to the user. Such examples justify the careful attention
for a more reliable breakdown criteria, as done by QRT.

• In the successful cases, a few problems (those for which err is in the form
(k1)k2) needed recovery from breakdown. Recall that our recovery method
consists of restarting with random vectors. Restarting was allowed only once.

• It can be seen that failure often arises because the conditioning of the eigen-
system is simply too large compared with the norm of A. This is the case for
the randomtri and riffle examples. A breakdown that happens very late in
the tridiagonalization is suggestive of a critical choice of starting vectors. It
is worth nothing that the results remain meaningful because they represent
an unfinished tridiagonalization, which can still be useful, as the error bound
shows. In those cases, it should be understood that T = Ak−1 for some k
and is not really tridiagonal. See, for example, (3.11). Recall that the tridi-
agonalization is not an end in itself. When k is close to n, the remaining
block can be reduced to Hessenberg form, and/or subsequent computations
can take advantage of this nearly tridiagonal structure.

In other less pathological problems not reported here, QRT had a similar pattern
of encouraging results. Overall, therefore, this algorithm was generally successful.

4.3. Eispack examples. We also applied our algorithm to matrices in the test-
suite of Eispack. Results are displayed in Table 3 and Figure 2. This testsuite consists
of 35 small matrices (none exceeding 20 × 20) that were thoughtfully designed to ex-
ercise the general purpose eigensolvers in Eispack. As in EigTool, the matrices are
pathological with defective and/or derogatory cases. The examples do not appear as
challenging as the EigTool examples, and we note that both algorithms were success-
ful on all of the problems, and the accuracy remains very good. There are cases where
recovery is needed at the very first step, suggesting that u = e1 and v = e1 are not

898 ROGER B. SIDJE AND K. BURRAGE

Table 3

Eispack examples.

QRT ATOTRI

Problem ‖A‖2 κ2(Xeig) err κ2(P)
‖A−P−1TP‖2

‖A‖2
err κ2(P)

‖A−P−1TP‖2
‖A‖2

1: 8x8 1.02E+03 1 0 1 E−15 0 2.05 E−16
2: 6x6 2.66E+09 5.73 0 1.69 E−16 0 3.28 E−16
3: 5x5 4.55E+01 E+08 0 E+02 E−16 0 E+02 E−15
4: 12x12 6.34E+01 1 0 1 E−16 0 1 E−16
5: 10x10 1.92E+08 E+02 0 E+02 E−16 0 E+02 E−15
6: 15x15 6.68E+06 E+01 0 E+01 E−15 0 E+01 E−15
7: 19x19 5.96E+05 E+01 0 E+03 E−14 0 E+03 E−13
8: 6x6 0 1 0 1 NaN 0 1 NaN
9: 6x6 5.58E+01 E+11 0 E+01 E−15 0 E+01 E−16
10: 6x6 1.67E+06 E+02 (2)0 E+01 E−15 (2)0 E+02 E−15
11: 5x5 2.41E+01 2.45 0 7.66 E−15 0 9.34 E−16
12: 5x5 1.93E+01 3.40 (1)0 6.32 E−16 (1)0 6.64 0
13: 5x5 1.93E+01 3.27 (1)0 E+01 E−14 (1)0 E+02 E−14
14: 5x5 2.07E+01 2.69 0 E+02 E−15 0 E+02 E−14
15: 5x5 2.07E+01 2.72 0 E+01 E−15 0 E+01 0
16: 3x3 1.80E+01 Inf 0 1 0 0 1 0
17: 3x3 1.07E+02 Inf 0 1 0 0 1 0
18: 3x3 1.06E+01 Inf 0 1 0 0 1 0
19: 4x4 1.26E+02 E+11 (1)0 2.49 E−17 (1)0 2.43 E−18
20: 3x3 1.00E+01 1 (1)0 5.17 E−15 (1)0 5.04 E−16
21: 4x4 1.00E+01 1 (1)0 2.75 E−15 (1)0 3.20 E−16
22: 5x5 1.00E+01 1 (1)0 E+01 E−14 (1)0 E+02 E−14
23: 6x6 1.00E+01 1 (1)0 E+01 E−14 (1)0 E+01 E−14
24: 8x8 1.00E+09 E+07 0 E+02 E−14 0 E+01 E−14
25: 4x4 7.01E+01 2.25 0 E+02 E−15 0 E+02 0
26: 3x3 7.12E+01 6.61 0 2.62 0 0 2.62 0
27: 4x4 4.35E+01 E+08 0 5.31 E−16 0 6.81 E−17
28: 4x4 1.23E+02 5.98 0 4.73 E−16 0 6.26 E−16
29: 6x6 7.28E+01 E+01 0 E+01 E−15 0 E+01 E−16
30: 6x6 1.93E+02 E+01 0 E+01 E−14 0 E+02 E−15
31: 8x8 2.37E+01 1.80 0 E+01 E−15 0 E+01 E−15
32: 4x4 1.78E+02 E+12 0 3.94 E−16 0 4.67 E−16
33: 6x6 1.46E+02 E+12 0 E+01 E−15 0 E+01 E−16
34: 8x8 3.12E+02 E+11 0 E+02 E−14 0 E+03 E−14
35: 10x10 1.08E+02 E+10 0 E+03 E−13 (5)0 E+02 E−15

suitable as default starting vectors there. Notice that the matrix in problem 8 is zero
and that this is why the relative error is NaN (Not-a-Number).

5. Conclusion. We have described a promising algorithm for the tridiagonaliza-
tion of nonsymmetric matrices. The algorithm primarily involves two stable House-
holder transformations per step and is twice as expensive as the symmetric tridiago-
nalization. The robust QR step provides a solid foundation to the proposed algorithm.
There is still the possibility of suffering from the effect of a large multiplier, but we
showed how to restrict risky roundoff errors to at most six entries irrespective of the
size of the matrix. This suggests that the algorithm may be of assistance in a wide
class of practical problems where a preliminary tridiagonalization is useful. Recovery
techniques were discussed in the case where a serious breakdown happens or when
a small pivot is rejected. A breakdown-free variant was described with the trade-off
of not producing a strict tridiagonal form. Largely successful numerical experiments
were conducted using a conservative restarting criteria to ascertain the robustness of
the method. A comparison was made with a previous tridiagonalization algorithm of

A QR-BASED TRIDIAGONALIZATION ALGORITHM 899

1 2 3 4 5 6 7 8
10

0

10
1

10
2

10
3

Iterations

co
nd

2(P
)

Eispack problem 5: 10x10

QRT
ATOTRI

0 5 10 15 20
10

1

10
2

10
3

10
4

Iterations

co
nd

2(P
)

Eispack problem 7: 19x19

QRT
ATOTRI

0 2 4 6 8 10 12 14
10

1

10
2

10
3

Iterations

co
nd

2(P
)

Eispack problem 6: 15x15

QRT
ATOTRI

1 1.5 2 2.5 3
10

0.3

10
0.4

10
0.5

Iterations

co
nd

2(P
)

Eispack problem 21: 4x4

QRT
ATOTRI

1 1.5 2 2.5 3 3.5 4

10
1.3

10
1.4

10
1.5

Iterations

co
nd

2(P
)

Eispack problem 29: 6x6

QRT
ATOTRI

1 2 3 4 5 6
10

0

10
1

10
2

10
3

10
4

Iterations

co
nd

2(P
)

Eispack problem 34: 8x8

QRT
ATOTRI

Fig. 2. History of the condition number of the transformation matrix, cond2(Pk) =
‖Pk‖2‖P−1

k
‖2, during the reduction of a few representative matrices from Eispack.

Dongarra, Geist, and Romine [4] and Geist [6], and it shows that our algorithm is gen-
erally more robust and reliable. A roundoff error analysis suggests that our method
should in general be numerically preferable over other tridiagonalization methods be-
cause it is nearly optimal in minimizing roundoff errors.

Acknowledgment. We would like to thank Prof. Nick Trefethen for his com-
ments on drafts of this paper.

900 ROGER B. SIDJE AND K. BURRAGE

REFERENCES

[1] F. L. Bauer, Sequential reduction to tridiagonal form, J. Soc. Indust. Appl. Math., 7 (1959),
pp. 107–113.

[2] P. I. Davies and N. J. Higham, A Schur–Parlett algorithm for computing matrix functions,
SIAM J. Matrix Anal. Appl., 25 (2003), pp. 464–485.

[3] A. Dax and S. Kaniel, The ELR method for computing the eigenvalues of a general matrix,
SIAM J. Numer. Anal., 18 (1981), pp. 597–605.

[4] J. J. Dongarra, G. A. Geist, and C. H. Romine, Algorithm 710: FORTRAN subroutines
for computing the eigenvalues and eigenvectors of a general matrix by reduction to general
tridiagonal form, ACM Trans. Math. Software, 18 (1992), pp. 392–400.

[5] R. W. Freund, M. H. Gutknecht, and N. M. Nachtigal, An implementation of the look-
ahead Lanczos algorithm for non-Hermitian matrices, SIAM J. Sci. Comput., 14 (1993),
pp. 137–158.

[6] G. A. Geist, Reduction of a general matrix to tridiagonal form, SIAM J. Matrix Anal. Appl.,
12 (1991), pp. 362–373.

[7] A. George, K. Ikramov, A. N. Krivoshapova, and W.-P. Tang, A finite procedure for the
tridiagonalization of a general matrix, SIAM J. Matrix Anal. Appl., 16 (1995), pp. 377–387.

[8] G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed., The Johns Hopkins Uni-
versity Press, Baltimore,1996.

[9] N. J. Higham, The Test Matrix Toolbox for MATLAB (Version 3.0), Numerical Analysis
Report 276, Department of Mathematics, University of Manchester, Manchester, UK, 1995.

[10] G. W. Howell, Efficient computation of eigenvalues of randomly generated matrices, Appl.
Math. Comput., 66 (1994), pp. 9–24.

[11] C. D. La Budde, The reduction of an arbitrary real square matrix to tridiagonal form using
similarity transformations, Math. Comp., 17 (1963), pp. 433–437.

[12] J. L. Nikolajsen, An improved Laguerre eigensolver for unsymmetric matrices, SIAM J. Sci.
Comp., 22 (2000), pp. 822–834.

[13] B. N. Parlett, A note on La Budde’s algorithm, Math. Comp., 18 (1964), pp. 505–506.
[14] B. N. Parlett, Reduction to tridiagonal form and minimal realizations, SIAM J. Matrix Anal.

Appl., 13 (1992), pp. 567–593.
[15] R. B. Sidje, EXPOKIT. A software package for computing matrix exponentials, ACM Trans.

Math. Software, 24 (1998), pp. 130–156.
[16] R. B. Sidje, K. Burrage, and B. Philippe, An augmented Lanczos algorithm for the effi-

cient computation of a dot-product of a function of a large sparse symmetric matrix, in
Proceedings of the International Conference on Computational Science, Lecture Notes in
Comput. Sci. 2659, P. M. A. Sloot et al. eds., Springer-Verlag, Berlin, 2003, pp. 693–704.

[17] C. Strachey and J. G. F. Francis, The reduction of a matrix to codiagonal form by elimi-
nations, Comput. J., 4 (1961), pp. 168–176.

[18] H. H. Wang and R. T. Gregory, On the reduction of an arbitrary real square matrix to
tridiagonal form, Math. Comp., 18 (1964), pp. 501–505.

[19] J. H. Wilkinson, The Algebraic Eigenvalue Problem, Clarendon Press, Oxford, England, 1965.
[20] T. G. Wright, EigTool Software Package; http://web.comlab.ox.ac.uk/pseudospectra/eigtool/.

