
THE EHRLICH-ABERTH METHOD FOR THE

NONSYMMETRIC TRIDIAGONAL EIGENVALUE PROBLEM ∗

DARIO A. BINI † , LUCA GEMIGNANI ‡ , AND FRANÇOISE TISSEUR §

Abstract. An algorithm based on the Ehrlich-Aberth iteration is presented for the computation
of the zeros of p(λ) = det(T − λI), where T is an irreducible tridiagonal matrix. The algorithm
requires the evaluation of p(λ)/p′(λ) = −1/trace(T − λI)−1, which is done here by exploiting the
QR factorization of T − λI and the semiseparable structure of (T − λI)−1. Two choices of the
initial approximations are considered; the most effective relies on a divide-and-conquer strategy, and
some results motivating this strategy are given. A Fortran 95 module implementing the algorithm
is provided and numerical experiments that confirm the effectiveness and the robustness of the
approach are presented. In particular, comparisons with the LAPACK subroutine dhseqr show that
our algorithm is faster for large dimensions.

Key words. nonsymmetric eigenvalue problem, symmetric indefinite generalized eigenvalue
problem, tridiagonal matrix, root finder, QR decomposition, divide and conquer.

AMS subject classifications. 65F15

1. Introduction. Nonsymmetric tridiagonal eigenvalue problems arise as inter-
mediate steps in a variety of eigenvalue problems. For example, the nonsymmetric
eigenvalue problem can be reduced in a finite number of steps to nonsymmetric tridiag-
onal form [11], [14]. In the sparse case, the nonsymmetric Lanczos algorithm produces
a nonsymmetric tridiagonal matrix. Other motivation for this work comes from the
symmetric quadratic eigenvalue problem

(λ2M + λD + K)x = 0, MT = M, DT = D, KT = K,

which is frequently encountered in structural mechanics [28]. The standard way of
dealing with this problem in practice is to reformulate it as a generalized eigenvalue
problem (GEP) Ax = λBx of twice the dimension, a process called linearization. Sym-
metry in the problem can be maintained with an appropriate choice of linearization
[28], such as, for example,

A =

[
0 K
K C

]
, B =

[
K 0
0 −M

]
, x =

[
u
λu

]
.

The resulting A and B are symmetric but not definite, and in general the pair (A,B)
is indefinite. When the pair (A,B) is of small to medium size, it can be reduced to a
symmetric tridiagonal-diagonal pair (S,D) using one of the procedures described by
Tisseur [27]. This is the most compact form that can be obtained in a finite number
of steps. For large and sparse matrices the pseudo-Lanczos algorithm of Parlett and
Chen [24] applied to A − λB, yields a projected problem S − λD with S symmetric

∗Numerical Analysis Report 428, Manchester Centre for Computational Mathematics, May 2003.
†Dipartimento di Matematica, Università di Pisa, via Buonarroti 2, 56127 Pisa

(bini@dm.unipi.it). This work was supported by MIUR, grant number 2002014121
‡Dipartimento di Matematica, Università di Pisa, via Buonarroti 2, 56127 Pisa

(gemignan@dm.unipi.it). This work was supported by GNCS of Istituto Nazionale Di Alta Matem-
atica.

§Department of Mathematics, University of Manchester, Manchester, M13 9PL, England
(ftisseur@ma.man.ac.uk, http://www.ma.man.ac.uk/~ftisseur/). This work was supported by En-
gineering and Physical Sciences Research Council grant GR/L76532 and Nuffield Foundation grant
NAL/00216/G.

1

tridiagonal and D diagonal. In both cases, the eigenvalues of the symmetric pair (S,D)
are the same as the eigenvalues of the nonsymmetric tridiagonal matrix T = D−1S.

Our aim is to derive a robust algorithm that computes all the eigenvalues of T in
O(n2) operations. The QR algorithm [15] does not preserve tridiagonal structure: the
matrix T is considered as a Hessenberg matrix and the upper part of T is filled in along
the iterations. Therefore the QR algorithm requires some extra storage and the eigen-
values are computed in O(n3) operations. Two alternatives are the LR algorithm [26]
for nonsymmetric tridiagonal matrices and the HR algorithm [7], [8]. Both algorithms
preserve the tridiagonal form of T but may be unstable as they use non-orthogonal
transformations. Attempts to solve the nonsymmetric tridiagonal eigenvalue by gen-
eralizing Cuppen’s divide and conquer algorithm have been unsuccessful because of a
lack of good root finders and because deflation is not as advantageous as it is in the
symmetric case [2], [19].

In this paper we propose a root finder for the characteristic polynomial of T based
on the Ehrlich-Aberth method [1], [12]. This method approximates simultaneously all
the zeros of a polynomial p(z): given a vector z(0) ∈ C

n of initial approximations to
the zeros of p(z), the Ehrlich-Aberth iteration generates a sequence z(j) ∈ C

n which
locally converges to the n-tuple of the roots of p(z), according to the equation

z
(k+1)
j = z

(k)
j −

p(z
(k)
j

)

p′(z
(k)
j

)

1 − p(z
(k)
j

)

p′(z
(k)
j

)

∑n
k=1,k 6=j

1

z
(k)
j

−z
(k)
k

, j = 1:n.(1.1)

The convergence is superlinear (cubic or even higher if the implementation is in the
Gauss-Seidel style) for simple roots and linear for multiple roots. In practice, the
Ehrlich-Aberth iteration has good global convergence properties, though no theoreti-
cal results seems to be known about global convergence. The main requirements when
using the Ehrlich-Aberth method for computing the roots of p(z) are

1. A fast, robust and stable computation of the Newton correction p(z)/p′(z).
2. A criterion for choosing the initial approximations to the zeros, z(0), so that

the number of iterations needed for convergence is not too large.
For the first issue, Bini [4] shows that Horner’s rule is an effective tool when p(z)
is expressed in terms of its coefficients. In this case the cost of each simultaneous
iteration is O(n2) operations. Moreover Horner’s rule is backward stable and its
computation provides a cheap criterion to test if the given approximation is in the
root-neighborhood (pseudospectrum) of the polynomial [4]. This makes the Ehrlich-
Aberth method an effective tool for approximating polynomial roots [6] and it is now
part of the MPSolve package (Multiprecision Polynomial Solver) [5].

In our context, where p(λ) = det(T − λI) is not available explicitly, we need
a tool having the same features as Horner’s rule, that is, a tool that allows us to
compute in a fast, stable and robust way the Newton correction p(λ)/p′(λ). This
issue is discussed in section 2 where we use the QR factorization of T − λI and the
semiseparable structure of (T − λI)−1 to compute the Newton correction by means
of the equation

p(λ)

p′(λ)
= − 1

trace(T − λI)−1
.

The algorithm that we obtain in this way fulfills the desired requirements of robust-
ness and stability. It does not have any difficulty caused by underflow and overflow
problems.

2

Two approaches are considered in section 3 for the second issue concerning the
choice of initial approximations. Following Bini [4] and Bini and Fiorentino [6], we
first apply a criterion based on Rouché’s theorem and on the Newton polygon, which
is particularly suited for matrices having eigenvalues of both large and small moduli.
However, the specific features of our eigenvalue problem motivate a divide and conquer
strategy: the initial approximations are obtained by computing the eigenvalues of two
suitable tridiagonal matrices of sizes m = dn/2e and n−m. Even though there are no
theoretical results guaranteeing convergence under this choice, we provide in section
3 some theoretical results that motivate this strategy.

The complete algorithm is described in section 4, where we also deal with the
issues of computing eigenvectors and running error bounds. Numerical experiments
in section 5 illustrate the robustness of our algorithm. In particular, our results show
that in most cases our algorithm performs faster than the LAPACK subroutine dhseqr
already for n ≥ 800 and the speed-up for n = 1600 ranges from 3 to 70. The implemen-
tation in Fortran 95 is available as a module at www.dm.unipi.it/˜bini/software.

2. Computing the Newton correction. Our aim in this section is to derive
a fast, robust and stable method for computing the Newton correction p(λ)/p′(λ),
where p(λ) = det(T − λI).

The tridiagonal matrix

T =




α1 γ1 0
β1 α2 γ2

β2
. . .

. . .
. . . αn−1 γn−1

0 βn−1 αn



∈ R

n×n(2.1)

is said to be unreduced or irreducible if βiγi 6= 0 for i = 1:n − 1. We denote by
Tk the leading principal submatrix of T in rows and columns 1 through k and let
pk = det(Tk − λI).

A natural approach is to compute p(λ) = pn(λ) and its derivative by using the
recurrence

p0(λ) = 1,
pk(λ) = (αk − λσk)pk−1(λ) − βk−1γk−1pk−2(λ), k = 2:n,

(2.2)

obtained by expanding det(Tk − λIk) by its last row. Since this recurrence is known
to suffer from overflow and underflow problems [23], we adopt a different strategy.

Assume that λ is not a zero of p, that is, p(λ) 6= 0. Then

p′(λ)

p(λ)
= −

n∑

i=1

1

λi − λ
= −trace

(
(T − λI)−1

)
= −

n∑

i=1

θi,(2.3)

where θi is the ith diagonal element of (T − λI)−1.
In what follows, S denotes the shifted tridiagonal matrix

S := T − λI.

If S is unreduced, S−1 can be characterized in terms of two vectors u = [u1, . . . , un]T

and v = [v1, . . . , vn]T such that

(S−1)ij =

{
uivj if i ≤ j,
ujvi otherwise.

(2.4)

3

We refer to Meurant’s survey on the inverse of tridiagonal matrices [21]. If we set
u1 = 1, the vectors u and v can be computed in O(n) operations by solving

Sv = e1, vnSu = en,

where vn 6= 0 since S is irreducible. It is tempting to use the vectors u and v
representing S−1 for the computation of the Newton’s correction via

p(λ)/p(λ)′ =
n∑

i=1

uivi.

However, as illustrated in [18], u and v can be extremely badly scaled and their
computation can break down because of overflow and underflow. In the next two
subsections, we describe two robust and efficient approaches for computing the trace
of the inverse of a tridiagonal matrix and discuss our choice.

2.1. Dhillon’s approach. Dhillon [10] proposes an algorithm to compute the
1-norm of the inverse of a tridiagonal matrix S in O(n) operations that is more
reliable than Higham’s algorithm [17] based on the compact representation (2.4). As
a by-product, Dhillon’s approach provides trace(S−1). His algorithm relies on the
computation of the two triangular factorizations

S = L+D+U+, S = U−D−L−,(2.5)

where L+ and L− are unit lower bidiagonal, U+ and U− are unit upper bidiagonal,
while D+ = diag(d+

1 , . . . , d+
n) and D− = diag(d−1 , . . . , d−n). If these factorizations

exist, the diagonal entries of S−1 denoted by θi, i = 1:n, can be expressed in terms
of the diagonal factors D+ and D− through the recurrence

θ1 = 1/d−1 , θi+1 = θi
d+

i

d−i+1

, i = 1:n − 1.(2.6)

Note that the triangular factorizations (2.5) may suffer element growth. They can
also break down prematurely if a zero pivot is encountered, that is, if d+

i = 0 or
d−i+1 = 0 for some i. To overcome this latter drawback, Dhillon [10] makes use of
IEEE floating point arithmetic, which permits computations with ±∞. With this
approach, Dhillon’s algorithm always returns an approximation of trace(S−1).

In our implementation of the Ehrlich-Aberth method the computation of det(S) is
needed at the last stage of the algorithm to provide an error bound for the computed
eigenvalues (see section 4). As D+ and D− may have 0 and ±∞ entries Dhillon’s
algorithm cannot be used to evaluate

det(S) =
n∏

i=1

d+
i =

n∏

i=1

d−i

since 0×±∞ does not make sense mathematically and produces a NaN (Not a Num-
ber) in extended IEEE floating point arithmetic.

2.2. A QR factorization approach. In this section we present an alternative
algorithm for the computation of trace(S−1) in O(n) operations that is based on
the properties of QR factorizations of tridiagonal matrices. Our algorithm keeps the
element growth under control and does not have any difficulty caused by overflow and

4

underflow, so there is no need to augment the algorithm with tests for dealing with
degenerate cases as in [10]. In addition, it provides det(S).

Recall that in our application S is the shifted tridiagonal matrix T −λI, where T
is given by (2.1). Since λ can be complex, S has real subdiagonal and superdiagonal
elements and complex diagonal elements. We denote by Gi the n× n unitary Givens
rotation equal to the identity matrix except in rows and columns i and i + 1, where

Gi([i, i + 1], [i, i + 1]) =

[
φi ψi

−ψ̄i φ̄i

]
, |φi|2 + |ψi|2 = 1.

Let S = QR be the QR factorization of S obtained by means of Givens rotations, so
that,

Gn−1 · · ·G2G1S = R and Q∗ = Gn−1 · · ·G2G1.(2.7)

Since S is tridiagonal, R is an upper triangular matrix of the form

R =




r1 s1 t1 0
. . .

. . .
. . .

rn−2 sn−2 tn−2

rn−1 sn−1

0 rn




.

If φ1 = ᾱ1τ1 and ψ1 = β1τ1 with τ1 = 1/
√

|α1|2 + β2
1 , then

S1 := G1S =




r1 s1 t1 0 . . .
0 α̃2 γ̃2 0
... β2 α3 γ3

... 0
. . .

. . .
. . .




with

r1 = φ1α1 + ψ1β1, s1 = φ1γ1 + ψ1α2, t1 = ψ1γ2,
α̃2 = −ψ1γ1 + φ̄1α2, γ̃2 = φ̄1γ2.

Recursively applying the same transformation to the (n−1)×(n−1) trailing principal
submatrix of S1 yields the factorization (2.7), where

τi = 1/
√

|α̃i|2 + β2
i , φi = α̃iτi, ψi = βiτi,

ri = φiα̃i + ψiβi, si = φiγ̃i + ψiαi+1, ti = ψiγi+1,
α̃i+1 = −ψiγ̃i + φ̄iαi+1, γ̃i+1 = φ̄iγi+1,

(2.8)

for i = 1:n − 1, with α̃1 = α1 and γ̃1 = γ1. Note that all the ψi are real, and if S is
unreduced, the ψi are nonzero.

The following result concerns the semiseparable structure of Q∗ and is crucial to
compute the diagonal entries of S−1 in O(n) arithmetic operations.

Theorem 2.1. Let S ∈ C
n×n be tridiagonal and unreduced and let S = QR be

its QR factorization computed according to (2.8). Define

D = diag(1,−ψ1, ψ1ψ2, . . . , (−1)n−1ψ1ψ2 · · ·ψn−1),
u = D−1[1, φ̄1, φ̄2, . . . , φ̄n−1]

T ,
v = D[φ1, φ2, φ3, . . . , φn−1, 1]T .

(2.9)

5

Then

Q∗ =




v1u1 ψ1 0
v2u1 v2u2 ψ2

...
...

. . .
. . .

... vn−1un−1 ψn−1

vnu1 vnu2 · · · vnun−1 vnun




.

Proof. We proceed by induction on n. For n = 2 the theorem trivially holds.
Assume that the result holds for n − 1, that is,

Q̃∗
n−1 = G̃n−2 · · · G̃2G̃1 =




ṽ1ũ1 ψ1 0

ṽ2ũ1
. . .

. . .
...

. . . ψn−2

ṽn−1ũ1 · · · ṽn−1ũn−2 ṽn−1ũn−1


 ∈ C

(n−1)×(n−1),

where G̃i, is the matrix Gi with its last row and column removed, and

ũ = diag(1,−ψ1, ψ1ψ2, . . . , (−1)n−2ψ1ψ2 · · ·ψn−2)
−1[1, φ̄1, φ̄2, . . . , φ̄n−2]

T ∈ C
n−1,

ṽ = diag(1,−ψ1, ψ1ψ2, . . . , (−1)n−2ψ1ψ2 · · ·ψn−2)[φ1, φ2, . . . , φn−2, 1]T ∈ C
n−1.

Since

Q∗
n = Gn−1

[
Q̃∗

n−1 0
0 1

]
:= Gn−1Qn−1,

the first n − 2 rows of Q∗
n−1 and Q∗

n coincide. Note that

u(1:n − 1) = ũ, vn−1 = φn−1ṽn−1, vn = −ψn−1ṽn−1, φ̄n−1 = unvn.

If ek denotes the kth column of the identity matrix, we have

e∗n−1Q
∗
n = φn−1ṽn−1[ũ

T , 0] + ψn−1e
∗
n

= [vn−1u1, vn−1u2, · · · , vn−1un−1, ψn−1]
T

and

e∗nQ∗
n = −ψn−1ṽn−1[ũ

T , 0] + φ̄n−1e
∗
n

= [vnu1, vnu2, · · · , vnun−1, vnun]T

which completes the proof.

For simplicity, we assume that S is nonsingular so that R−1 exists. Let w be the
solution of the system Rw = v, where v is defined in (2.9). Then, using Theorem 2.1
and the fact that R is triangular, the jth diagonal elements of S−1, θj , is given by

θj = e∗jS
−1ej = e∗jR

−1Q∗ej = uje
∗
jR

−1v = uje
∗
jw = ujwj ,

and hence

trace(S−1) =

n∑

j=1

ujwj .

6

Observe that the computation of u and v by mean of (2.9) generates underflow and
overflow problems: since the diagonal entries of D are products of the ψi with |ψi| ≤ 1,
then for large n, D may have diagonal entries that underflow to zero and inverting D
would generate overflow. A way of avoiding this drawback is by scaling the system
Rw = v with the diagonal matrix D of Theorem 2.1. This yields R̂ŵ = v̂, where

R̂ = D−1RD, ŵ = D−1w, v̂ = D−1v = [φ1, . . . , φn−1, 1]T .(2.10)

With this scaling, no accumulation of products of ψi is needed. The entries of the
matrix R̂ are given by

r̂i = ri, ŝi = −ψisi, t̂i = ψiψi+1ti(2.11)

and their computation does not generate overflow since |ψi| ≤ 1. Underflow in the
computation of ŝi and t̂i is not a problem since their inverses are not needed in the
solution of R̂ŵ = v̂. The only terms that must be inverted in the computation of ŵ
are the diagonal elements of R̂. Since ‖v̂‖∞ = 1, we have ‖ŵ‖∞ ≤ ‖R−1‖∞. Overflow

in the computation of the ŵi implies that R̂ and therefore S = T − λI is numerically
singular. In that case we have detected an eigenvalue. Let

û = [1, φ̄1, φ̄2, . . . , φ̄n−1]
T .(2.12)

Note that because |φi|2 + |ψi|2 = 1, the components of û are all bounded by 1 in
modulus. Since w = Dŵ and u = D−1û, we find that uiwi = ûiŵi, i = 1, . . . , n, so
that

trace(S−1) =

n∑

j=1

ûjŵj(2.13)

and

det(S) =

n∏

i=1

ri.(2.14)

Equations (2.8) and (2.10)–(2.13) constitute our algorithm for the computation of
p′(λ)/p(λ) = trace

(
(T − λI)−1

)
= trace(S−1), which we summarize below in pseu-

docode. The function Givens constructs φi and ψi and guards against the risk of
overflow. We refer to Bindel et al. [3] for a detailed explanation on how this function
should be implemented.

function τ = trace−Tinv(β, α, γ)
% Compute τ = trace(S−1), where S = tridiag(β, α, γ) is n × n tridiagonal
% with real off-diagonals and complex diagonal.
a = α1, g = γ1, u1 = 1

%Computes vectors r̂, ŝ, t̂ in (2.11), û in (2.12) and v̂ in (2.10).
for i = 1 : n − 1

(φ, ψ) = Givens(a, βi)
ri = φa + ψβi, si = −ψ(φg + ψαi+1)
a = −ψg + φ̄αi+1, ui+1 = φ̄, vi = φ
if i < n − 1, ti = ψ2γi+1, g = φ̄γi+1, end
if i > 1, ti−1 = ψti−1, end

7

end
rn = a, vn = 1

% Solve the linear system R̂ŵ = v̂.
wn = vn/rn

wn−1 = (vn−1 − wnsn−1)/rn−1

for i = n − 2 : −1: 1
wi = (vi − wi+1si − wi+2ti)/ri

if wi = Inf, Tr = Inf, return, end
end
τ =

∑n
i=1 uiwi

The function trace−Tinv requires O(n) operations.

3. Choosing initial approximations. The choice of the initial approximations

z
(0)
j , j = 1:n, used to start the Ehrlich-Aberth iteration (1.1) crucially affects the

number of steps needed by the method. We consider two approaches, one based on
Rouché’s theorem and one based on a divide and conquer strategy. The former is
well suited for matrices having eigenvalues with both large and small moduli, while
the latter better exploits the tridiagonal nature of the problem and seems to perform
better in practice.

3.1. Criterion based on Rouché’s theorem. Here we recall a criterion for
selecting initial approximations that has been introduced by Bini [4] and is based on
a combination of Rouché’s theorem and the use of the Newton polygon.

Let p(x) =
∑n

j=0 ajx
j be a polynomial of degree n with a0 6= 0 and let

q`(x) =

n∑

j=0

|aj |xj − 2|a`|x`, 0 ≤ ` ≤ n.

Observe that, if θ is a positive zero of q`(x) then |a`|θ` =
∑n

i=0,i 6=` |ai|θi > |aj |θj for
any j 6= `. Whence

u` < θ < v`,

u` = maxi<`

∣∣∣ ai

a`

∣∣∣
1

`−i

, v` = mini>`

∣∣∣a`

ai

∣∣∣
1

i−`

,
(3.1)

where, u` and v` are finite and nonzero since a0, an 6= 0. Ostrowski [22] pointed out
that if 0 < ` < n, the polynomial q`(x) can have either two positive real roots, say
s` ≤ t` or no positive roots and, if ` = 0 or ` = n, there exists only one positive root,
denoted by t0 and sn, respectively. Let

0 = `0 < `1 < `2 < · · · < `k < `k+1 = n

be the values of ` for which q`(x) = 0 has positive real roots. Then it holds that

t0 = t`0 ≤ s`1 ≤ t`1 ≤ · · · ≤ s`k
≤ t`k

≤ s`k+1
= sn.

Theorem 3.1. The closed annulus Aj =
{
z ∈ C : t`j

≤ |z| ≤ s`j+1

}
, 0 ≤ j ≤ k

contains `j+1−`j roots of p(x) whereas the open annulus of radii s`j
, t`j

, 0 ≤ j ≤ k+1
contains no roots of p(x), where s0 = 0 and tn = +∞.

Proof. See Ostrowski [22].

8

The inclusion results in Theorem 3.1 can be used to determine a set of initial points
for the Ehrlich-Aberth iterations that, unlike the criterion in [1], selects complex
numbers along different circles. For example, we may choose `j+1 − `j equispaced
points on the circle of radius s`j+1

. Unfortunately, the indices `j and roots s`j
, t`j

,
j = 0: k are expensive to compute. However, from (3.1) we deduce that the roots s`j

,
t`j

, must belong to the interval (u`j
, v`j

) such that u`j
< v`j

. Therefore, computing
all the values rj , j = 1:h for which urj

≤ vrj
, j = 1:h, provides a superset of

{`0, . . . , `k+1} together with the values of uri
and vri

which yield bounds to the roots
s`j

, t`j
. With the help of the Newton polygon, Bini [4] computes the set {r0 =

0, r1, . . . , rh, rh+1 = n} and provides a cheap way to select initial approximations to
the roots of p(x) as summarized below.

The upper convex hull of the set

S = {(`, log |a`|) ∈ R
2 : a` 6= 0, ` = 0:n}

is the set of points (rj , log |arj
|), 0 = r0 < r1 < · · · < rh < rh+1 = n such that the

piecewise linear function obtained by joining the points (rj , log |arj
|), (rj+1, log |arj+1

|),
j = 0:h is convex and lies above the points (`, log |a`|), ` = 0:n (Newton’s polygon).
We recall that the computation of the upper convex hull is inexpensive: it can be
carried out in O(n log n) arithmetic operations and comparisons.

Theorem 3.2. Let u` and v`, ` = 1:n − 1 be defined in (3.1), moreover let

u0 = (1 + max
`>0

|a`/a0|)−1, vn = 1 + max
`<n

|a`/an| .

Denote r0, r1, . . . , rh+1 the abscissas of the upper convex hull of S. Then the following

implication holds: u` ≤ v` if and only if ` ∈ {r1, . . . , rk}, moreover

{`0, `1, . . . , `k, `k+1} ⊂ {r0, r1, . . . , rh, rh+1} ,

u`j
< s`j

≤ t`j
< v`j

, 0 ≤ j ≤ k + 1,

vrj
= urj+1

=

∣∣∣∣
arj

arj+1

∣∣∣∣
1/(rj+1−rj)

, 0 ≤ j ≤ h.

Proof. See Bini [4, Sec.2].

According to the above theorem, the set {r0, r1, . . . , rh+1} and the values vrj
,

j = 0 : h, which can be computed at a low cost, provide us with information about
the radii t`j

and s`j+1
of the annuli Aj which contain `j+1 − `j roots of p(x) for

j = 0 : k. This result avoids the expensive task of computing the roots s` and t` of
the polynomial q`(x) for ` = `j , j = 0 : k. More precisely, if

u`1 < s`1 ≤ t`1 < u`1 = ur1
≤ ur2

≤ · · · ≤ urq
= u`2 < s`2 ≤ t`2

then, choosing initial approximations along the circles of radii ur1
≤ ur2

≤ · · · ≤
urq

provides approximations inside the annulus formed by the radii t`1 and s`2 in
accordance with Theorem 3.1.

Hence we use the following semi-randomized criterion for choosing initial approx-
imations to all the roots of the polynomial p(x):

For j = 0:n, we select nj = rj+1 − rj complex numbers of moduli vrj
according

to the formula

z
(0)
rj+k = vrj

eiθk , θk =
2πk

nj
+

2πk

n
+ σ, k = 0:nj − 1,

9

Table 3.1

Rouché based criterion: the initial approximations are chosen along circles of radius vri .

` [s`, t`] |λ| vr r
0 (0, 0.00098) 0.001 0.0014 (2) 0

0.0029
0.0029 0.005 (2) 2
0.0069

4 (0.0072, 94.43) 99.99 97.08 (1) 4
5 (100.057, 2562.6) 10000 3399 (1) 5

10000 10066 (1) 6
10000 30100 (1) 7

8 (38634.5,∞) 8

for a random σ ∈ [−π, π].
With this criterion, the number of initial approximations chosen in the annulus

A(t`j
, s`j+1

) coincides with the number of roots of p(x) in A(t`j
, s`j+1

), j = 0: k. The
above criterion is particularly effective for polynomials having roots with very different
moduli. For more details and for the theoretical tools on which the criterion is based
we refer the reader to Bini [4].

In order to apply this criterion to our eigenvalue problem we have to devise
an efficient technique for computing log |ai|, where the ai’s are the coefficients of
p(λ) = det(T − λI). Observe that a0 = p(0) and, more generally, a` = p(`)(0)/`!,
` = 0:n. The quantities p(`)(0) can be computed by differentiating the recurrence
(2.2) ` times at a cost of O(n2) operations. However, to avoid overflow and underflow
problems, it is more convenient to evaluate p(λ) at the 2k roots of unity for 2k > n and
then interpolate these values by means of the FFT in order to recover the coefficients
a`. Note that a robust way for evaluating p(λ), based on the QR factorization of
T − λI and on (2.14), is presented in section 2.2.

As an example consider the 8 × 8 matrix T = tridiag(β, α, γ) with

β = [−1, 40,−1, 40,−1, 40,−1, 40],

α = [10−3, 104, 10−3, 104, 10−3, 104, 10−3, 102],

γ = [1, 1, 1, 1, 1, 1, 1].

The set of indices for which equation q`(x) = 0 has solution is {`0, `1, `2, `3} =
{0, 4, 5, 8} and the indices of the vertices of the Newton polygon are {r0, . . . , r6} =
{0, 2, 4, 5, 6, 7, 8}, moreover {v0, . . . , v7} = {0.0014, 0.005, 97.08, 3399, 10066, 30100},
while the moduli of the eigenvalues of T are {0.001, 0.0029, 0.0029, 0.0069, 99.99, 10000,
10000, 10000}. We observe that the values vri

, i = 0: 5 computed by means of the
Newton polygon are good approximations to the magnitude of the eigenvalues of T .
Table 3.1 summarizes the situation concerning the matrix T = tridiag(β, α, γ): in
column 1 we report the indices ` for which equation q`(x) = 0 has solution, column 2
reports the open intervals (s`i

, t`i
), i = 0: 3 which, according to Theorem 3.1 do not

contain the moduli of the eigenvalues λi, i = 1: 8. The remaining columns contain
the moduli of the eigenvalues |λi|, i = 1: 8, the values vri

, i = 0: 6, of the radii of the
circles where initial approximations are chosen, together with the number of these
approximations in parentheses, and the values of the indices ri, i = 0: 6 of the vertices
of the Newton polygon.

3.2. Divide and conquer strategy. Another way of getting initial approxima-
tions for the Ehrlich-Aberth iteration is from the eigenvalues of two suitable tridiag-

10

onal matrices of order roughly n/2. Rewrite T as

T = T̃ + uvT ,(3.2)

where

T̃ =

[
T1 0
0 T2

]
= T1 ⊕ T2, u = ek + ek+1, v = βkek + γkek+1(3.3)

and

T1 =




α1 γ1 0

β1 α2
. . .

. . .
. . . γk−1

0 βk−1 αk − βk


 , T2 =




αk+1 − γk γk+1 0

βk+1 αk+2
. . .

. . .
. . . γn−1

0 βn−1 αn


 .

There are no obvious connections between the eigenvalues of T and those of T̃ , unlike
in the symmetric case, in which the eigenvalues of T interlace those of T̃ . In this
section, we show that the eigenvalues of T̃ generally provide good starting points for
the Ehrlich-Aberth iteration for p(λ) = det(T − λI).

We also remark that if the eigenvalue problem comes from the discretisation of a
continuous problem (e.g., some partial differential equation), the submatrices T1 and
T2 can be viewed as the matrices obtained from a discretization with a coarser grid of
the same (or of a similar) continuous problem and their eigenvalues should be good
approximations of the eigenvalues of T .

Stronger properties can be proved if T1 and T2 have a common eigenvalue.
Theorem 3.3. If λ is an eigenvalue of T1 and T2 then λ is an eigenvalue of

T = (T1 ⊕ T2) + uvT for any vectors u and v.
Proof. Let T1x1 = λx1 and T2x2 = λx2 with nonzero x1 and x2, so that

x = (ν1x
T
1 , ν2x

T
2)T is eigenvector of T̃ = T1 ⊕ T2 for any ν1 and ν2. Then, Tx =

(T̃ + uvT)x = λx + (ν1v
T
1 x1 + ν2v

T
2 x2)u, where v = [vT

1 , vT
2]T has been partitioned

conformably with x. The scalars ν1 and ν2 can be chosen so that ν1v
T
1 x1+ν2v

T
2 x2 = 0,

making x an eigenvector of T corresponding to the eigenvalue λ.

By following a continuity argument, we may deduce that if λ1 and λ2 are eigen-
values of T1 and T2, respectively, such that |λ1−λ2| is small, then T = (T1⊕T2)+uvT

has an eigenvalue close to λ1 and λ2.
Our next theorem relies on the following lemma from Henrici [16].
Lemma 3.4. Let p(λ) be a polynomial of degree n in λ, and let z be any complex

number. Then the disk of center z and radius n|p(z)/p′(z)| contains at least one zero

of p(λ).
Theorem 3.5. Assume that T1 ∈ R

k×k and T2 ∈ R
(n−k)×(n−k) are both diag-

onalizable, that is, there exist X1, X2 nonsingular such that T1 = X1D1X
−1
1 and

T2 = X2D2X
−1
2 , with D1 = diag(d1, d2, . . . , dk) and D2 = diag(dk+1, dk+2, . . . , dn).

Let βk, γk ∈ R and

ηi =

{
βk(eT

i X−1
1 ek)(eT

k X1ei) if i ≤ k,

γk(eT
i−kX−1

2 e1)(e
T
1 X2ei−k) if i > k.

(3.4)

Then in any disk of center di and radius

ρi =
n|ηi|∣∣∣1 +

∑n
j=1
j 6=i

ηi+ηj

dj−di

∣∣∣
11

there exists an eigenvalue of T = T1 ⊕ T2 + uvT , where u = ek + ek+1 and v =
βkek + γkek+1.

Proof. Let T̃ = T1 ⊕ T2. We have

T − λI = (T̃ − λI)(I + (T̃ − λI)−1uvT),

and taking determinants on both sides of the equation gives

p(λ) =

n∏

i=1

(di − λ)(1 + vT (T̃ − λI)−1u).

Using the eigendecomposition of T1 and T2 and the definition of u and v, the expression
for p(λ) simplifies to

p(λ) =

n∏

i=1

(di − λ)

(
1 +

n∑

i=1

ηi

di − λ

)
.(3.5)

Thus

p(di) = ηk

∏

j=1
j 6=i

(dj − di),

and

p′(λ) = −
n∑

j=1

∏

k=1
k 6=j

(dk − λ) −
n∑

`=1

η`

(n−1∑

j=1

∏

k=1
k 6=`,j+1

(dk − λ)
)

so that

p′(di) = −
∏

j=1
j 6=i

(dj − di)
(
1 +

n∑

j=1
j 6=i

ηi + ηj

dj − di

)
.

Applying Lemma 3.4 completes the proof.

According to Theorem 3.5, a small value for ρi indicates that there is an eigenvalue
of diag(T1, T2) close to an eigenvalue of T . An important question related to the
effectiveness of using the eigenvalues of T1 and T2 as initial approximations for starting
the Ehrlich-Aberth iteration is whether the number of “large” values for ρi is small or
not. Note that if i ≤ k, ηi is a multiple of the product of the last components of the ith
right and left eigenvector of T1 and, if i > k, ηi is a multiple of the product of the first
components of the (i− k)-th left and right eigenvectors of T2. If T is unreduced, then
ηi is nonzero since the eigenvectors of unreduced tridiagonal matrices cannot have a 0
in the first and last component. We report in Table 3.2 ranges of values for ρi and |ηi|
obtained from 1000 randomly generated tridiagonal matrices T of size n = 100. The
table shows that in more than 80% of the cases, |ηi| and ρi are smaller than 10−4.

Note that the denominator
∣∣∣1 +

∑n
j=1,j 6=i

ηi+ηj

dj−di

∣∣∣ in the definition of ρi does not seem

to play an important role. The probability that for almost all the values of i this
denominator is close to zero seems to be small. These experiments suggest that most
eigenvalues of T1 ⊕ T2 should be good initial values for the Ehrlich-Aberth iteration
for p(λ) = det(T − λI).

12

Table 3.2

Ranges of values for ρi and |ηi| obtained from 1000 randomly generated tridiagonal matrices T
of size n = 100.

% ≤ 10−16 ≤ 10−12 ≤ 10−8 ≤ 10−4

ρi 48 60 71 82
|ηi| 54 65 77 88

From the results of this section we propose the following divide and conquer
strategy to compute initial approximations for the Ehrlich-Aberth iterations. The
matrix T is recursively split according to the rank-one tearing in (3.2)–(3.3) until
2 × 2 or 1 × 1 subproblems are reached. The Ehrlich-Aberth iteration is then used
to glue back the subproblems using the previously computed eigenvalues as starting
guesses for the iterations.

Remark 3.6. A similar divide and conquer strategy can be obtained by choosing,
as initial approximations, the eigenvalues of the leading principal m×m submatrix T1

of T and of the trailing principal (n−m)× (n−m) submatrix T2 of T for m = dn/2e.
These matrices are obtained by zeroing the entries in position (m,m+1) and (m+1,m)
of T which correspond to applying a rank-2 correction to the matrix T . An analysis
similar to the one performed for the rank-1 tearing can be carried out.

4. The algorithm. In this section we describe an implementation of the Ehrlich-
Aberth iteration where the choice of the initial approximations is performed by means
of a divide-and-conquer strategy. Then we provide running error bounds needed for
the validation of the computed approximations and discuss the computation of the
eigenvectors.

The main algorithm for eigenvalue approximation is described below in pseu-
docode. This implementation follows section 3.2. A different implementation can be
based on the rank-2 tearing of Remark 3.6 where the initial approximations are the
eigenvalues of the principal submatrices obtained by zeroing the entries in position
(m,m + 1) and (m + 1,m), where m = bn/2c.

First we report the recursive part of the algorithm and then the main refinement
engine, i.e., Ehrlich-Aberth’s iteration.

function z =eigen(β, α, γ)
% Computes the eigenvalues of the n × n tridiagonal matrix T = tridiag(β, α, γ)
% perturb is a small scalar set to the maximum relative perturbation
% of intermediate eigenvalues.
if n = 1, z = α1, return, end

if n = 2, set z to the eigenvalues of
[

α1

β1

γ1

α2

]
, return, end

% Recursive stage
if n > 2

m = bn/2c
α′ = α(1 : m), α′

m = α′
m − βm

z(1:m) =eigen
(
β(1 : m − 1), α′, γ(1 : m − 1)

)

α′′ = α(m + 1 : n), α′′
1 = α′′

1 − γm

z(m + 1 : n) =eigen
(
β(m + 1 : n − 1), α′′, γ(m + 1 : n − 1)

)

Choose random ρ such that perturb/2 < ρ < perturb
z(1 : m) = (1 + iρ) ∗ z(1 : m)
z(m + 1 : n) = (1 − iρ) ∗ z(m + 1 : n)

13

% Refine the current approximations
z=Aberth(β, α, γ, z)

end

The role of perturb is to avoid different approximations collapsing to a single value.
In fact, if zi = zj with i 6= j then the Ehrlich-Aberth iteration cannot be applied.
Moreover, since in practice the Ehrlich-Aberth iteration performs better if the inter-
mediate approximations are in the complex field, we have chosen a pure imaginary
value as perturbation. The pseudocode for the Ehrlich-Aberth iteration is reported
below.

function z = Aberth(β, α, γ, z)
% Refine the n approximations z = (zi), i = 1 : n to the eigenvalues of
% T = tridiag(β, α, γ) by means of the Ehrlich-Aberth iteration.
% maxit is the maximum number of iterations,
% tol is a small quantity used for the convergence criteria.
it = 0
ζ = zeros(n, 1) % ζi = 1 if zi has converged to an eigenvalue and 0 otherwise.
while (

∑n
i=1 ζi < n & it < maxit)

it = it + 1
for i = 1 : n

if ζi = 0
τ = trace−Tinv(β, α − zi, γ)
if τ =Inf

nwtc = 0
else

nwtc = −1/τ
end
if |nwtc| < tol‖T − ziI‖∞, ζi = 1, end
zi = zi − nwtc/(1 − nwtc

∑n
j=1,j 6=i

1
zi−zj

)

end
end

end

Observe that at the general it-th sweep, the Ehrlich-Aberth correction is applied
only at the approximations zi which have not yet converged. This makes the cost of
each sweep depend on the number of approximated eigenvalues. For this reason, in
order to evaluate the complexity of the algorithm, it is convenient to introduce the
number µ of average iterations per eigenvalue given by the overall number of Ehrlich-
Aberth iterations applied to each eigenvalue divided by n. For example, if n = 4 and
the number of iterations needed for computing λ1, λ2, λ3, λ4 is 5,10,14,21, respectively,
then µ = 50/4 = 12.5.

4.1. Running error bound. In this section we derive a running error bound
for the error in the computed eigenvalues λ`, ` = 1:n. Our bounds are based on the
following result of Carstensen [9].

Lemma 4.1. Let p(λ) be a monic polynomial of degree n in λ, and let λ1, λ2, . . . , λn

be pairwise distinct complex numbers. Denote by D(λ`, ρ`) the disk of center λ` and

14

radius

ρ` =
n|p(λ`)|∣∣∣

∏n
j=1
j 6=`

(λ` − λj)
∣∣∣
.

Then U =
⋃

` D(λ`, ρ`) contains all the zeros of p(λ). Moreover, any connected com-

ponent of U made up by k disks contains k zeros. In particular, any isolated disk

contains a single zero.

The set of disks {D(λ`, ρ`), ` = 1:n} defined in the above lemma is called a set

of inclusion disks. Note that, because of rounding errors in the computation of p(λ`)
and

∏n
j=1, j 6=`(λ` − λj), the computed ρ` denoted by ρ̂`, may be inaccurate. Thus,

the disks D(λ`, ρ̂`) may not provide a set of inclusion disks.
Consider the standard model of floating point arithmetic [18, Section 2.2]

fl(x op y) = (x op y)(1 + δ), |δ| ≤ u, op = +,−, ∗, /,(4.1)

where u is the unit roundoff. Since λ can be complex, part of the computation is
carried out in complex arithmetic. Under the standard model (4.1) (see [18, Lemma
3.5]),

fl(x ± y) = (x ± y)(1 + δ), |δ| ≤ u,

fl(xy) = xy(1 + δ), |δ| ≤ 2
√

2u,(4.2)

fl(x/y) = (x/y)(1 + δ), |δ| ≤ 4
√

2u,

where we ignore second order terms in u.
Suppose we can compute an upper bound ∆p` for the error |p̂` − p(λ`)|, where

p̂` = fl(p(λ`)). Then from Lemma 4.1 we immediately deduce that the disk D(λ`, ρ̃`),
where

ρ̃` = (1 + 2nu)
n(|p̂`| + ∆p`)

π̂`
, π̂` = fl

(∣∣
n∏

j=1
j 6=`

(λ` − λj)
∣∣
)
,

is such that D(λ`, ρ`) ⊂ D`(λ`, ρ̃`), ` = 1 : n, therefore the set {D(λ`, ρ̃`), ` = 1 : n}
is a set of inclusion disks.

The main difficulty is in determining ∆p`. Recall that p(λ`) =
∏n

i=1 ri, where ri is
the ith diagonal element of R in the QR factorization of T −λ`I. Let fl(ri) = ri +δri.
Then

p̂` = fl

(
n∏

i=1

ri

)
=

n∏

i=1

(ri + δri) ·
n−1∏

i=1

(1 + εi), |εi| ≤ 2
√

2u

and, if we ignore the second order terms in u, we have p̂` = p(λ`) + δp`, with

|δp`| ≤ p̂`

(
n∑

i=1

∆ri/r̂i + (n − 1)2
√

2u

)
=: ∆p`.(4.3)

The ∆ri are computed along with the r̂i = fl(ri) thanks to a systematic running
error analysis of all the quantities involved in the calculation of ri. For that we make
use of the following lemma.

15

Lemma 4.2. Let x = yz + αv ∈ C, where α is given data, y = ŷ + δy with |δy| ≤
∆y, z = ẑ + δz with |δz| ≤ ∆z, v = v̂ + δv with |δv| ≤ ∆v, and ŷ, ẑ, v̂,∆y,∆z,∆v are

known computed quantities. Then x̂ = fl(x) = x + δx with

|δx| ≤ ∆x := |ŷ|∆z + |ẑ|∆y + 2
√

2u|ŷ| |ẑ| + |α|∆v + 2
√

2u|α| |v̂|.

Proof. The proof is a straightforward application of (4.1) and (4.2).

We notice that in the function trace−Tinv (see section 2.2) all the quantities used
to compute ri can be rewritten in the form x = yz + αv. Hence, assuming that the
function Givens returns ∆φ and ∆ψ, we can add the following lines

∆ri = |φ|∆a + |a|∆φ + 2
√

2u|a| |φ| + |βi|∆ψ + 2
√

2u|βi| |ψ|,
∆a = |ψ|∆g + |g|∆ψ + 2

√
2u|ψ| |g| + |αi+1|∆φ + 2

√
2u|αi+1| |φ|,

∆g = |γi+1|∆φ + 2
√

2u|γi+1| |φ|
to the function trace−Tinv after the computation of ri, a and g, respectively. The
two quantities ∆a and ∆g are initially set to zero and ∆rn = ∆a. The error bound
∆p` is then obtained using (4.3).

4.2. Computing the eigenvectors. One of the most convenient methods for
approximating an eigenvector of T once we are given an approximation λ of the
corresponding eigenvalue is the inverse power iteration applied to the matrix T − λI.
A crucial computational issue is to determine a suitable initial guess v(0) for the
eigenvector in order to start the iteration:

(T − λI)w(i+1) = v(i)

v(i+1) = w(i+1)/‖w(i+1)‖ i = 0, 1, 2, . . .

This problem has been studied in several recent papers [10], [13], [25]. In particular,
in [13] a strategy is described for the choice of v(0) which relies on the evaluation of
the index k of the entry of maximum modulus in the main diagonal of (T − λI)−1.
Our algorithm for the approximation of the eigenvalues provides, as a byproduct,
the diagonal entries of (T − λI)−1. Therefore the value of k is determined at no
cost. Moreover, the QR factorization of the matrix T − λI that is computed by
our algorithm can be used for performing each inverse power iteration without any
significant additional cost.

5. Numerical experiments. We have implemented the algorithm for the ap-
proximation of the eigenvalues of the tridiagonal matrix T in Fortran 95. The code,
organized as a Fortran 95 module, can be downloaded from http://www.dm.unipi.

it/~bini/software. The tests have been performed on an Athlon 1800 with IEEE
double precision arithmetic.

In what follows eigen refers to our subroutine implementing the Ehrlich-Aberth
iteration. In order to evaluate the performance of eigen, beside the cpu time, we
report the number µ of average iterations per eigenvalues required in the last recursive
step.

We considered two sets of tests: tests with matrices of relatively small size and
tests with matrices of large size. The latter test suite is used for testing the asymp-
totic cost of eigen and its reliability; the former test suite is useful for checking the
numerical quality of the computed approximations with eigen compared with the
LAPACK subroutine dhseqr that implements the QR algorithm for computing the
eigenvalues of an upper Hessenberg matrix.

16

Table 5.1

CPU time in seconds for eigen (in boldface) versus LAPACK’s dhseqr.

.
n 100 200 400 800 1600 3200 6400

Test 1 0.04/0.01 0.1/0.06 0.4/0.6 1.4/4.8 5.8/76 25/661 112/6209

Test 2 0.04/0.02 0.1/0.10 0.4/0.8 1.5/7.5 5.7/56 17/315 68/2378

Test 3 0.04/0.02 0.1/0.07 0.4/0.7 1.5/6.7 5.7/152 22/1510 78/15188

Test 4 0.25/0.02 1.1/0.07 4.2/0.6 16.6/4.3 67.6/75.6 294/896 1293/6092

Test 5 0.06/0.02 0.1/0.10 0.5/0.9 1.5/6.8 5.8/135 20/1239 83/11088

Test 6 0.26/0.02 1.02/0.08 4.0/0.6 15.8/5.4 63/93 283/744 757/7351

Test 7 0.07/0.02 0.3/0.10 0.9/0.8 3.2/6.7 12.0/124 66/1460 204/9155

Test 8 0.02/0.02 0.7/0.08 0.2/0.6 0.8/4.0 3.2/49.9 15/382 63/2838

Test 9 0.13/0.02 0.5/0.11 1.9/0.9 7.9/8.2 32/175 139/1450 562/13250

Test 10 0.06/0.02 0.2/0.08 0.6/0.7 2.1/6.0 7.7/130 32/975 137/8990

5.1. Large matrices. We have considered the following test problems which we
describe in their normalized form det(T − λD) = 0 where matrices are scaled so that
ti,i+1 = ti+1,i = 1, i = 1, : n − 1. Here α represents the vector of the diagonal entries
of T and δ the vector of the diagonal entries of D.
Test 1: αi = i ∗ (−1)bi/8c, δi = (−1)i/i, i = 1 : n
Test 2: αi = 10 ∗ (−1)bi/8c, δi = i ∗ (−1)bi/9c, i = 1 : n
Test 3: αi = i, δi = n − i + 1, i = 1 : n
Test 4: αi = (−1)i, δi = 20 ∗ (−1)bi/5c, i = 1 : n

Test 5: αi = 105(−1)i ∗ (−1)bi/4c, δi = (−1)bi/3c, i = 1 : n
Test 6: αi = 2, δi = 1, i = 1 : n
Test 7: αi = 1

i + 1
n−i+1 , δi = 1

i (−1)bi/9c, i = 1 : n

Test 8: αi = i ∗ (−1)bi/13c+bi/5c, δi = (n − i + 1)2 ∗ (−1)bi/11c, i = 1 : n
Test 9: αi = 1, i = 1 : n; δi = 1, for i < n/2, δi = −1 if i ≥ n/2.

Test 10: αi and δi take random values uniformly distributed in [−0.5, 0.5].
The spectrum of the test matrices is plotted in Figures 5.1 and 5.2 for n = 600.

The tests have been performed with n ∈ {100, 200, 400, 800, 1600, 3200, 6400} on
a PC with an Athlon 1800 cpu. Table 5.1 reports the cpu time in seconds required
by the eigen versus the time required by the LAPACK subroutine dhseqr. These
timings show that in all the cases the growth of the cpu time required by our algorithm
is a quadratic function of n, whereas the cost of dhseqr grows cubically with n. For
certain tests (1,2,3,5,7,8,10) the algorithm is very fast: µ is between 2 and 10. For
tests 4,6,9 the algorithm requires more iterations: µ is in the range 17–42. The
threshold value for which our algorithm is faster than the LAPACK subroutine is
about n = 400 for tests 1,2,3,5,8,10, n = 800 for tests 7,9, and n = 1600 for tests 4
and 6. The speed-up reached for n = 6400 is in the range 4.7–194.7.

The average number µ of Ehrlich-Aberth iterations per eigenvalue, reported in
Table 5.2, seems to be almost independent of n and it varies according to the specific
problem.

5.2. Small matrices. We tested Liu’s 14× 14 matrix [20], which in normalized
form is defined by (α1, . . . , α14) = (0, 0, 0, 0, 0, 0,−1,−1, 0, 0, 0, 0, 0, 0) and (δ1, . . . , δ14) =
(−1, 1, 1, 1,−1,−1, 1,−1, 1, 1,−1,−1,−1, 1). This problem has only one zero eigen-
value of multiplicity 14. As shown in Figure 5.3, the accuracy of the approximations
delivered by eigen are not worse than those provided by dhseqr.

17

−4 −2 0 2 4

x 10
5

−1

−0.5

0

0.5

1
test 1

−5 0 5 10 15
−4

−2

0

2

4
x 10

−3 test2

0 200 400 600 800
−1

−0.5

0

0.5

1
test 3

−0.1 −0.05 0 0.05 0.1
−0.05

0

0.05
test 4

−2 −1 0 1 2

x 10
5

−1.5

−1

−0.5

0

0.5

1

1.5
x 10

−5 test 5

0 1 2 3 4
−1

−0.5

0

0.5

1
test 6

Fig. 5.1. Eigenvalues of the test matrices 1–6 for n = 600.

We have also considered the matrix in test 5 for n = 20, which has clustered eigen-
values in groups with large moduli and in groups with small moduli. More precisely,
there are 4 eigenvalues close to 105, 6 eigenvalues close to 10−5 and 10 eigenvalues of
modulus less than 10−4. In Figure 5.4 we show the relative errors of the approxima-
tions computed by the algorithm dhseqr and by our algorithm. The approximations
have been compared with the values obtained by performing the computation with
50 decimal digits. Eigenvalues have been ordered with nondecreasing real parts. The
largest relative errors of the LAPACK routine are obtained with the eigenvalues of
smallest modulus. The Ehrlich-Aberth iteration provides better approximations.

18

−2000 −1000 0 1000 2000
−300

−200

−100

0

100

200

300
test 7

−500 0 500 1000
−4

−2

0

2

4
x 10

−6 test 8

−4 −2 0 2 4
−0.015

−0.01

−0.005

0

0.005

0.01

0.015
test 9

−200 −100 0 100 200
−50

0

50
test 10

Fig. 5.2. Eigenvalues of the test matrices 7–10 for n = 600.

Table 5.2

Average number of iterations per eigenvalue and maximum number of iterations (in parenthe-
ses) of the Ehrlich-Aberth method.

n 100 200 400 800 1600 3200 6400
Test 1 1.8 (3) 1.8 (3) 1.8 (19) 1.8 (18) 1.8 (18) 1.8 (18) 1.8 (18)
Test 2 2.0 (4) 1.9 (4) 2.0 (14) 1.9 (4) 1.7 (3) 1.0 (6) 1.0 (6)
Test 3 2.1 (4) 2.0 (4) 1.9 (4) 1.8 (4) 1.7 (4) 1.5 (4) 1.0 (4)
Test 4 22.2 (26) 21.7 (31) 21.2 (29) 21.1 (39) 20.4 (62) 19.9 (86) 19.4 (156)
Test 5 3.1 (11) 1.5 (10) 2.4 (12) 1.2 (10) 1.6 (24) 1.1 (6) 1.1 (12)
Test 6 22.1 (26) 21.6 (26) 21.2 (27) 20.5 (28) 20.1 (29) 19.5 (29) 18.9 (31)
Test 7 4.5 (9) 4.5 (13) 3.8 (13) 3.4 (11) 3.3 (14) 3.0 (14) 2.4 (16)
Test 8 1.1 (3) 1.0 (3) 1.0 (3) 1.0 (3) 1.0 (3) 1.0 (3) 1.0 (1)
Test 9 6.6 (31) 5.9 (13) 5.8 (30) 5.6 (15) 5.9 (43) 5.7 (16) 5.7 (27)
Test 10 3.4 (10) 2.7 (7) 2.4 (7) 2.3 (8) 2.1 (12) 2.1 (9) 2.0 (9)

5.3. Initial approximations. We have compared the divide-and-conquer strat-
egy (D&C) with the sequence generated by the Ehrlich-Aberth iteration starting from
the perturbed n-th roots of 1 and starting by selecting as initial approximations the
values provided by the criterion based on Rouché’s theorem. The average number of
iterations per eigenvalue needed by the three techniques are reported in Table 5.3 for
n = 50 and show that the divide-and-conquer strategy provides the best performance
with a very low number of average iterations per eigenvalue.

The choice of the initial approximations provided by Rouché’s theorem improves
the performance by a factor of up to 5.6 with respect to the customary choice of the
perturbed n-th roots of 1.

19

−0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08
−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

Fig. 5.3. Liu’s matrix: approximations provided by eigen (+) and by the Lapack subroutine
dhseqr (∗).

0 5 10 15 20
−18

−16

−14

−12

−10

−8

−6

Fig. 5.4. Matrix of test 5 with n = 20: log scale relative errors provided by eigen (+) and by
the Lapack subroutine dhseqr (∗).

From the numerical experiments we have also verified that the evaluation of the
coefficients of the characteristic polynomial by means of the three-term recurrence is
prone to overflow problems but it is numerically more stable than the approach based
on FFT. In fact, with the latter computation we can provide a uniform upper bound
to the absolute error whereas the relative errors in the coefficients with the lowest
modulus may reach values even greater than one. This fact may limit the efficiency of
the Rouché-based criterion if the coefficients of the polynomial are very unbalanced.

5.4. Error bounds. We report the results of the tests concerning the compu-
tation of the a posteriori error bounds ρ̃`, ` = 1 : n, obtained by applying Lemma 4.1
and equation (4.1) with the running error analysis of section 4.1. We have considered
the following two instances of the problem det(T −λD) = 0 where ti+1,i = ti,i+1 = 1,
i = 1 : n − 1, and δi, i = 1 : n denote the diagonal elements of D.

case 1: n = 10 ti,i = i, δi = (−1)i+1, i = 1 : n;

case 2: n = 10, ti,i = 106·(−1)i+1

, δi = 1, i = 1 : n/2, δi = −1, i = n/2 + 1, n.

The first problem has well conditioned eigenvalues that are computed with full
precision: all the digits of their computed approximations are correct. The second
problem has eigenvalues in clusters, some of which are ill conditioned. Therefore some

20

Table 5.3

Average number of iterations of the Ehrlich-Aberth method with initial approximations selected
in three different ways for matrices of size n = 50.

Test Rouché roots of 1 D&C
1 50.4 110.7 4.5
2 13.7 23.1 2.1
3 23.7 31.8 2.1
4 18.5 65.5 23.2
5 62.6 178.5 3.2
6 31.0 32.6 22.3
7 56.9 57.3 5.8
8 8.3 45.7 1.7
9 11.9 17.3 5.3
10 32.3 32.2 4.5

Table 5.4

Bounds on the relative errors: n = 10, αi = i, δi = (−1)i+1, i = 1 : n.

eigenvalues rel. errors upper bounds
1.312128484159043 1.01E-16 2.73E-16
-0.5176028578197819 7.39E-17 1.04E-15
-2.648431399492776 1.99E-17 3.61E-16
3.741351244815260 3.46E-17 1.77E-16
-4.79575908601544 2.14E-17 2.14E-16
5.830924274494304 7.11E-17 7.12E-16
-6.855643258908795 1.95E-17 1.66E-16
7.874047291369576 2.39E-17 2.05E-16
9.948577928314871 2.39E-17 3.89E-16
-8.889592620916256 2.29E-17 2.79E-16

approximation is less accurate than in the previous case.

We have computed the eigenvalues with double and with quartuple precision. In
Tables 5.4, 5.5 we report the approximation to the eigenvalues λ̃ provided by our
algorithm in double precision; and the relative error bound |λ̃ − λ|/|λ|, where λ is
the approximation to the eigenvalue computed with quartuple precision; the relative
bound ρ̃/|λ̃| computed by means of (4.1), Lemma 4.1 and the running error analysis.
The inaccurate digits of the approximated eigenvalues are typed in boldface.

Tables 5.4 and 5.5 confirm that the computed upper bounds are greater than the
actual corresponding relative errors, moreover, the bound is generally sharp. Only
for the clustered eigenvalues having small moduli the upper bounds may differ much
from the actual relative errors.

6. Conclusion. We have introduced an algorithm for the computation of the
Newton quotient p(λ)/p′(λ) for p(λ) = det(T −λI), and T a tridiagonal matrix, based
on the QR factorization of T − λI and on the semiseparable structure of (T − λI)−1.
The algorithm, whose arithmetic cost is linear in the size n of the matrix T , is robust.

This algorithm has been used for implementing the Ehrlich-Aberth iteration,
which approximates all the eigenvalues of T . Besides the straightforward way of
choosing the initial approximations in the unit circle, two more elaborated strategies
for the choice of the initial approximations have been proposed and compared. The
most interesting one is based on a divide-and conquer technique, which, even though
heuristic, is motivated by some inclusion results that we have proved in Section 3.2.
Running error bounds for the errors in the computed eigenvalues are also provided.

The numerical experiments, performed with a large set of test matrices, have

21

Table 5.5

Bounds on the relative errors: n = 10, αi = 106·(−1)i+1
, δi = 1 for i ≤ n/2, δi = −1 for

i > n/2, i = 1 : n.

eigenvalues rel. errors upper bounds
2.264233639202252E-07+i5.291653234332500E-07 1.91E-16 3.57E-9
2.264233639203277E-07-i5.291653234332789E-07 1.84E-13 3.57E-9
2.137785887708795E-06 2.06E-8 2.07E-7
-1.810912991456234E-06 6.86E-11 7.18E-10
1000000.000000653 3.70E-17 3.70E-16
1000000.000002879 3.13E-17 3.13E-16
999999.9999994679 4.55E-17 4.55E-16
-1000000.000003000 2.28E-17 2.28E-16
-1000000.000001000 7.61E-18 7.61E-17
-7.7971809885387 1.89E-6 1.90E-5

confirmed the effectiveness of the algorithm. Comparisons with the Lapack subroutine
dhseqr have shown that for moderately large values of n our algorithm is faster. In
particular, the Ehrlich-Aberth iteration has a cost which is O(n2), whereas the Lapack
subroutine has a cost O(n3).

REFERENCES

[1] O. Aberth, Iteration methods for finding all zeros of a polynomial simultaneously, Math.
Comp., 27 (1973), pp. 339–334.

[2] L. Adams and P. Arbenz, Towards a divide and conquer algorithm for the real nonsymmetric
eigenvalue problem, SIAM J. Matrix Anal. Appl., 15 (1994), pp. 1333–1353.

[3] D. Bindel, J. Demmel, W. Kahan, and O. Marques, On computing Givens rotations reliably
and efficiently. ACM Trans. Math. Software, 28(2):206–238, 2002.

[4] D. A. Bini, Numerical computation of polynomial zeros by means of Aberth’s method, Numer-
ical Algorithms, 13 (1996), pp. 179–200.

[5] D. A. Bini and G. Fiorentino, MPSsolve: Numerical computation of polyno-
mial roots v. 2.0, FRISCO report, 1999. Software and papers available from
ftp://ftp.dm.unipi.it/pub/mpsolve.

[6] , Design, analysis, and implementation of a multiprecision polynomial rootfinder, Numer.
Algorithms, 23 (2000), pp. 127–173.

[7] M. A. Brebner and J. Grad, Eigenvalues of Ax = λBx for real symmetric matrices A and
B computed by reduction to a pseudosymmetric form and the HR process, Linear Algebra
Appl., 43 (1982), pp. 99–118.

[8] A. Bunse-Gerstner, An analysis of the HR algorithm for computing the eigenvalues of a
matrix, Linear Algebra Appl., 35 (1981), pp. 155–173.

[9] C. Carstensen, Inclusion of the roots of a polynomial based on Gerschgorin’s theorem, Numer.
Math., 59 (1991), pp. 349–360.

[10] I. S. Dhillon, Reliable computation of the condition number of a tridiagonal matrix in O(n)
time, SIAM J. Matrix Anal. Appl., 19 (1998), pp. 776–796.

[11] J. J. Dongarra, G. A. Geist, and C. H. Romine, Algorithm 710: FORTRAN subroutines
for computing the eigenvalues and eigenvectors of a general matrix by reduction to general
tridiagonal form, ACM Trans. Math. Software, 18 (1992), pp. 392–400.

[12] L. W. Ehrlich, A modified Newton method for polynomials, Comm. ACM, 10, 2 (1967),
pp. 107–108.

[13] K. V. Fernando, On computing an eigenvector of a tridiagonal matrix. I. Basic results, SIAM
J. Matrix Anal. Appl., 18 (1997), pp. 1013–1034.

[14] G. A. Geist, Reduction of a general matrix to tridiagonal form, SIAM J. Matrix Anal. Appl.,
12 (1991), pp. 362–373.

[15] Gene H. Golub and C. F. Van Loan, Matrix Computations, Johns Hopkins University Press,
Baltimore, MD, USA, third ed., 1996.

[16] P. Henrici, Applied and Computational Complex Analysis, vol. 1, Wiley, New York, 1974.
[17] N. J. Higham, Efficient algorithms for computing the condition number of a tridiagonal matrix,

SIAM J. Sci. Statist. Comput., 7 (1986), pp. 150–165.

22

[18] , Accuracy and Stability of Numerical Algorithms, Society for Industrial and Applied
Mathematics, Philadelphia, PA, USA, second ed., 2002.

[19] E. R. Jessup, A case against a divide and conquer approach to the nonsymmetric eigenvalue
problem, Appl. Numer. Math., 12 (1993), pp. 403–420.

[20] Z.-S. Liu, On the extended HR algorithm, Technical report PAM-564, Center for Pure and
Applied Mathematics, University of California, Berkley, USA, 1992.

[21] G. Meurant, A review on the inverse of symmetric tridiagonal and block tridiagonal matrices,
SIAM J. Matrix Anal. Appl., 13 (1992), pp. 707–728.

[22] A. Ostrowski, On a theorem by J. L. Walsh concerning the moduli of roots of algebraic
equations, Bull. Am. Math. Soc., 47 (1941), pp. 742–746.

[23] B. N. Parlett, The Symmetric Eigenvalue Problem, Society for Industrial and Applied Mathe-
matics, Philadelphia, PA, USA, 1998. Unabridged, amended version of book first published
by Prentice-Hall in 1980.

[24] B. N. Parlett and H. C. Chen, Use of indefinite pencils for computing damped natural modes,
Linear Algebra Appl., 140 (1990), pp. 53–88.

[25] B. N. Parlett and I. S. Dhillon, Fernando’s solution to Wilkinson’s problem: an application
of double factorization, Linear Algebra Appl., 267 (1997), pp. 247–279.

[26] H. Rutishauser, Solution of Eigenvalue Problems with the LR-Transformation, vol. 49, Nat.
Bur. Standards Appl. Math. Ser., 1958, pp. 47–81.

[27] F. Tisseur, Tridiagonal-diagonal reduction of symmetric indefinite pairs, Numerical Analysis
Report No. 409, Manchester Centre for Computational Mathematics, Manchester, England,
2002.

[28] F. Tisseur and K. Meerbergen, The quadratic eigenvalue problem, SIAM Rev., 43 (2001),
pp. 235–286.

23

