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This paper describes programs to reduce a nonsymmetric matrix to trldiagonal form, to compute

the eigenvalues of the tridiagonal matrix, to Improve the accuracy of an elgenvalue, and to

compute the corresponding eigenvector. The intended purpose of the software 1s to find a few

elgenpams of a dense non symmetric matrix faster and more accurately than prewous methods,

The performance and accuracy of the new routines are compared to two EISPACK paths: RG and
HQR-INVIT. The results show that the new routines are more accurate and also faster If less than
20 percent of the eigenpams are needed.
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1. INTRODUCTION AND OBJECTIVES

A standard approach in computing the eigenvalues of a general square

matrix is to reduce the matrix first to Hessenberg form by a sequence of

orthogonal transformations, and then to determine the eigenvalues of the

Hessenberg matrix through an iterative process known as the QR algorithm
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[3]. The reduction to Hessenberg form requires 0(n3) operations, where n. is

the order of the matrix, and the subsequent iterative phase also requires

0(n3) operations. The subroutine package EISPACK [10] uses this scheme to

compute all of the eigenvalues and eigenvectors of a general matrix.

If the original matrix is symmetric, then that symmetry can be preserved

in the initial reduction, so that the reduced matrix is tridiagonal. Although

the reduction to tridiagonal form still requires 0(n3) operations, the subse-

quent iterations preserve the tridiagonal form and, hence, are much less

expensive, so that the total cost of the iterative phase is reduced to 0( n2 )
operations. Again, standard software is available in EISPACK for implement-

ing this two-phase approach for the symmetric case.

The attractively low operation count obtained when iterating with a tridi-

agonal matrix suggests that the tridiagonal form would be extremely benefi-

cial in the nonsymmetric case as well. Such an approach presents two

difficulties, however. First, QR iteration does not preserve the structure of a

nonsymmetric tridiagonal matrix. This problem can be overcome by using LR

iteration [9] instead, which preserves the tridiagonal form. Second, it is

difficult to reduce a nonsymmetric matrix to tridiagonal form by similarity

transformations in a numerically stable manner. Methods to improve the

stability can be found in [4]. Here, we describe the software available to

reduce the matrix to tridiagonal form and to compute the eigenvalues and

eigenvectors of the resulting tridiagonal matrix.

2. INITIAL APPROXIMATION TO EIGENVALUES

2.1 Reduction to Tridiagonal Form

The algorithm used in the direct reduction to tridiagonal form is discussed in

detail in [6]. The algorithm alternately eliminates columns and rows of the

matrix, preserving the form shown in Figure 1. Retaining this matrix struc-

ture allows us to improve the overall stability of the algorithm by pivoting at

each step.

At the k th stage (see Figure 1), the algorithm applies the permutation that

minimizes the maximum multiplier in the transformation matrix iV,- lNC.

Here, N, and NC are elementary matrices such that NCAN-l reduces column

k and N,- l(NC ANC- 1)Nr reduces row k. This minimization can be performed

in O(n – k) time because of the special structure of N,– lNc. Details of this

minimization algorithm can be found in [5].

The reduction algorithm may encounter a pivot that is zero (or unaccept-

ably small) regardless of the permutation. When this occurs, the original

reduction is said to have broken down, and the subprogram N EWSTR is

called. N EWSTR applies a random Householder similarity transformation to

the original matrix. The original matrix must therefore be saved, but this is

already necessary in order to apply the iterative refinement method described

in Section 3.2. N EWSTR is only applied once in our scheme. If the reduction of

the second matrix also breaks down, then the algorithm returns an error

code. This occurrence has not yet been observed in practice.

The transformations used in annihilating each column and row are saved
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Fig 1 Partially reduced matrix.

(+)

in the locations made available by the eliminations at each step. These

transformations are needed for the calculation of the eigenvectors during the

iterative refkement step.

2.2 Eigenvalues of a Trldiagonal Matrix

C)ne of the most efficient methods of calculating all of the eigenvalues of a

nonsymmetric tridiagonal matrix is LR iteration. Most of the improvements

that have been incorporated into QR iteration over the years [ 11], such as

implicit double-shift iterations, deflation, splitting, and arbitrary shifts, can

also be used in the context of LR iteration.

An implementation of LR iteration that is specifically tailored for tridiago-

nal matrices, called TLR, has been developed. The user supplies the tridiago-

nal matrix as three vectors. In the first step, the matrix is scaled so that its

superdiagonal elements are equal to one. This reduces the operation count,

since LR iteration preserves the form of such a tridiagonal matrix. Moreover,

the superdiagonal vector is now free for use as a working array. Implicit

double-shift iterations and splitting are implemented just as they are in

EISPACK for HQR. Splitting due to either negligible subdiagonal elements

or to two consecutive small subdiagonal elements are implemented. The

criteria we use for negligible and small entries are the same as in HQR.
Implicit arbitrary shifts are invoked in two different contexts in TLR. First,

if an eigenvalue has not converged in 20 iterations, then the iteration is

assumed to be stuck in a cycle, and one arbitrary (random) double-shift is

applied. Second, if the LR iteration encounters a zero- (small) diagonal

element, then the iteration breaks down, and one arbitrary shift is applied to

change the values of the diagonal elements. (Another obvious method for

avoiding a zero diagonal is to pivot inside LR, but this has the major

drawback of destroying the tridiagonal structure of the matrix.) Up to 10

consecutive arbitrary shifts are tried if the breakdown condition persists,

after which the algorithm aborts with an error condition. However, a single

arbitrary shift proved sufficient during all of our tests.

Because of the potential for breakdown and the need to restart an iteration

with a different shift, a copy of the matrix is made before the start of each

iteration. This requires at most 2 n storage, One n vector must be supplied by

the user for this purpose. The second n vector initially holds the superdiago-

nal, but this space is reclaimed after the matrix is scaled.

3. IMPROVING THE ACCURACY OF THE EIGENVALUE AND COMPUTING
THE EIGENVECTOR

Approximations to the eigenvalues of A are obtained by reducing the matrix

to tridiagonal form T (with ATOTRI) and then by calculating the eigenvalues
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of T (with TLR). In many cases, particularly for small matrices, these

computed eigenvalues closely approximate the eigenvalues of A. However, for

larger matrices, or for matrices whose eigenvalues are ill-conditioned, the

rounding errors introduced during the reduction of A to tridiagonal form,

coupled with the errors introduced by LR iteration, can induce significant

errors in the computed eigenvalues. Hence, we regard the reduction to

tridiagonal form T and the subsequent calculation of the eigenvalues of T as

yielding approximations to the eigenvalues of A, which are then improved in

a subsequent phase of the computation.

3.1 Inverse Iteration with Rayleigh Quotients

One standard technique for improving the accuracy of an eigenvalue and, at

the same time, computing the associated eigenvector is to apply inverse

iteration coupled with calculating the Rayleigh quotient. If only a few eigen-

pairs are desired, then inverse iteration is fairly attractive, since it is

accurate and reasonably rapid. The EISPACK routine INVIT performs inverse

iteration (without Rayleigh quotients) to a Hessenberg matrix. Each iteration

requires 0( nz ) operations, since solving a linear system with a new right-hand

side is required for each iteration. If the complete eigensystem of a dense

matrix is required, then the EISPACK routine RG is recommended because it

is robust, is highly accurate, and requires only 0( rz3) operations for the full

eigensystem.

Another alternative is to apply inverse iteration with Rayleigh quotients to

the tridiagonal matrix T obtained from A by ATOTRI. Again, the solution of

a different linear system for each iteration is required, but the linear systems

now have a tridiagonal coefficient matrix and, therefore, can be solved in only

0(n) steps. Thus, inverse iteration with Rayleigh quotients applied to the

matrix T is a very fast means of obtaining accurate approximations to the

eigensystem of T. Unfortunately, to obtain the eigenvectors of the original

matrix A, one must apply the inverse of the transformations that reduced A

to tridiagonal form to the computed eigenvectors of T, and the eigenvectors of

A will suffer from any resulting roundoff error. Moreover, the eigenvalues of

T may differ from those of A for the same reason. The results given in

Section 4 indicate the degree of inaccuracy stemming from these roundoff

errors.

In summary, inverse iteration on T can give a useful rapid initial approxi-

mation to the eigensystem of A. But there may be inaccuracies introduced by

rounding error either in calculating the eigenvalues or in obtaining the

eigenvectors of A from the eigenvectors of T.

3.2 Iterative Refinement

It has long been known that Newton’s method for the solution of nonlinear

systems can be applied to the problem of calculating the eigensystem of a
matrix [8]. Moreover, in [2], Dongarra et al. describe an algorithm for

improving the accuracy of an eigenpair based on Newton’s method. The main

drawback of their approach is that it is too costly, in general. In this section
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we describe a less costly variant of the algorithm given in [2] that takes

advantage of the tridiagonalization of A while still obtaining a high degree of

accuracy.

Assume that ( & x) is an approximate eigenpair of the matrix A and that

A + 8A and x + 8x are a neighboring eigenpair such that the relationship

A(x+8x) =(/i +&i)(. K+t ix)

is exact. Thus, 8A and 8x represent the errors associated with the computed

values A and x, respectively.

Rearranging the equation, we have

(A– AI)8x-c5Ax =Ax-Ax+6A8x>

where the last term on the right will be of second order in the errors in A

and x.

If we let r = Ax – Ax and assume that the second-order term 8A8 x is

negligible, we can rewrite the equation in the form

where e~Sx = O is a normalization applied to x such that the s component of

x equals one, implying 8x, == O (see [2] for details).

When the original approximate eigenvalue is found by using the reduction

to tridiagonal form, this yields a matrix N such that

A =N-~TN.

Using the transformations from the reduction to tridiagonal form, we have

which can be rewritten as

where 7 = Nr and 6X= N 8 x. The solution to the resulting linear system

produces approximations to the errors 8A and 8X, yielding new approxima-

tions to the eigenpair. The linear system is easily solved by transforming it

into a tridiagonal system of equations by a rank-one modification. The

software we have implemented applies the Sherman–Morrison formula [7] to

solve the system of equations.
Given the original matrix A, the tridiagonal matrix T, the transformations

N that reduced A to T ( A = N-1 TN ), and the approximate eigenvalue A(l,
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the refinement algorithm can be described as follows:

u is an initial guess for the eigenvector;
perform one step of inverse iteration, (T – A. I)vo = v;

XO = ivuo;
fori = 0,1,2,...

r =Ax – h,x,;
g’? = (e~N, – I)T;

(T–ALl
solve

g:
w, = NyL;

X,+1 =Xz + w,;
A = Al + p,;5+1

check if converged,

end.

11A-x,+1– A+l%+lll ~ ~.

10 IIAIIE
>

Note that the eigenpair is refined relative to the original matrix; that is, the

residual is computed with the original data A, and the improvement is being

made to the eigenvector of A. The tridiagonal matrix T and the transforma-

tions IV are used solely to simplify solving the system of equations. Hence,

the convergence will be to the eigensystem of the original matrix A, not the

tridiagonal matrix T.

Because of the relationship with Newton’s method, convergence is guaran-

teed when ~qK < ~, where

( 1

A – A, I ‘Xz ‘1

~= ,T ~
s

>

T = IIX,+1 – X,Ii, and K = 2 (K is a bound on the second derivative). As can be
seen, the convergence rate and error bound depend on the condition of the

matrix (see [1] for additional information).

The approach described here will not only improve the accuracy of the

approximate eigenvalue A but will also compute the eigenvector. The conver-

gence theorem for this iterative procedure can be found in [2].

During the improvement phase, the subprogram named REFINE is called

with the original data matrix A, the reduced tridiagonal matrix T, the

transformation N, and an approximate eigenvalue (WR, Wl) as parameters. A

single inverse iteration step is performed with the tridiagonal matrix T (using

GTINIT) to obtain an initial approximation to the eigenvector associated with

the given eigenvalue. On return from REFINE, the improved eigenvalue is

stored in (WR, Wl), and the improved eigenvector in (Xl% Xl).

4. EXAMPLES AND PERFORMANCE

We present two test suites to illustrate the speed and accuracy of the

new algorithms. Routines from Release 3 of EISPACK, which is currently

available, were used in our comparisons. All experiments were executed
on an IBM RS\6000 model 530, using the FORTRAN compiler xlf with

optimization.
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Table I. Comparison of Accuracy of New Routines to EISPACK Routine RG: Residual Is

maxll~ – AIII., and eA Is maxi A, – Xl( A, is the eigenvalue obtained from RG,

and X, M the computed eigenvalue)

Accuracy of routznes on dense random matrices

RG INVIT

Problem ATOTRI-TLR (EISPACK) (EISPACK) REFINE

size ‘A residual residual eh Residual

10 8 7E-14 1.8E-14 2.OE-14 4.4E-15 3.7E-16

100 7.2E-06 5.3E-12 2.9E-12 2.7E-13 5.lE-13

500 1.2E-02 2.5E-09 3.OE-10 4 3E-12 2.3E-12

Table II. Comparison of Execution T,mes in Seconds of New Routines to EISPACK
Routine RG: Time for INVIT and REFINE Are per Elgenpair

Performance of routines on dense random matrices

Problem RG ATOTRI ELMHES INVIT REFINK

size all (A, x) TLR HQR (per & x) (per & x)

10 0.024 0.004 0.030 0.0004 0.0036
100 1.710 0.293 0.796 0.0053 0.0332
300 78300 5.560 34.500 0.1490 0.4342
500 459.000 22.200 202.000 0.5911 1.867

Tables I and II show the results for random matrices with the entries

uniformly distributed in [ —1.0, 1. O]. Table I shows the maximum difference

between the eigenvalues computed by ATOTRI-TLR and those calculated by

RG. The maximum difference of the improved eigenvalues is also given.

Finally, the residual is given for the results from inverse iteration, iterative

refinement, and RG. The inverse iteration results are obtained by calling the

EISPACK routines ELMHES and HQR, followed by INVIT for every eigenpair.

The maximum residual over all of the eigenpairs is reported in the table.

Similarly, REFINE was called for every eigenpair, and the maximum residual

is reported. In every case the smallest maximum residual was generated with

the new iterative refinement routines.
Table II compares the execution times of three methods of calculating

eigenpairs for a nonsymmetric matrix. For reference, the time required for

RG to calculate all of the eigenpairs is given. RG does not allow the user to

calculate selected eigenpairs. If selected eigenpairs are desired, then the user

can call the EISPACK path ELM HES, HQR, INVIT, ELMBAK. The table shows

the time to reduce the matrix to Hessenberg form and to calculate all of its

eigenvalues. In a separate column, the average time to calculate an eigenpair

is given. (The time for ELM BAK is divided among the n eigenpairs calculated.)

The table also shows the time to reduce the matrix to tridiagonal form and to

calculate its eigenvalues. This operation is amazingly fast on a cache-based

machine like the RS/6000. The average time per eigenpair for improving the

eigenvalue and for calculating the corresponding eigenvector with iterative

refinement is about four times more than using INVIT. But because the

ACM Transactmns on Mathematical Software, VOI 18, No. 4, December 1992



Algorithm 710: Computing Eigenvalues and Eigenvectors . 399

Table III. Maximum Residual for Three Methods of Calculating Eigenvalue\Eigenvector

Pairs for Dense Matrices

EISPACK test suite of real general matrices

maxl(A – ~~~)/~~~1 max]l Ax – Axll.

Problem ATOTRI Inverse Iterative EISPACK
number TLR iteration refinement (RG)

1
2

3
4
5

6

7
8

9
10

11
12

13

14
15
16

17
18

19

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

lE-13
lE-11
8E-07
5E-15
lE-15

lE-13

8E-10

OE-00

2E-06

5E-15
7E-16

3E-00

7E-15

3E-15
7E-16
OE-00

OE-00
OE-00
8E-07

lE-16
lE-16

5E-14

6E-14
1E-10

lE-16
lE-16

6E + 07
lE-16
lE-16

lE-13

2E-12
lE-03

lE-16

lE-16
lE-01

2.5E-12
9.2E-07
9.OE-13
1.8E-14
1.7E-07
L5E-07

3.8E-08

O.OE-OO

2.9E-15
1.2E-10

1.7E-14

2.9E-15
1.7E-13

3.3E-12
5.2E-14
7.5E-15
4.4E-15

6.3E-15
9.OE-15

1.4E-14

6.3E-15
1.OE-13

2.OE-10

2.5E-06

8.7E-07
4.3E-13

3.6E-01
4.8E-14
2.4E-14

5.2E-14

5.7E-14
1.4E-14

5.4E-01

4.4E-02

1.8E-12

2.9E-13
2.lE-07
1.3E-14
2.7E-13
9.4E-09
1.2E-09

2.9E-10

O.OE-00
1.7E-13

9.5E-11

1.3E-14

1.7E-15

9.2E-16
1.9E-16
4.8E-16
O.OE-00
O.OE-00

O.OE-00
8.8E-09
1.OE-15

2.2E-16

7.lE-16

3.2E-17

6.2E-09
2.2E-15

3.6E-14
9.OE-10
1.2E-14
2.8E-14
2.3E-13
1.8E-15

1.4E-05
1.9E-04

9.lE-14

1.8E-05

1.2E-12

6.3E-06
4.6E-06
1.OE-13

9.4E-07
2.4E-08

8.5E-09

O.OE-00

5.3E-09
1.8E-08
1.7E-13

2.4E-14
1.7E-14
2.4E-14
1.6E-14
1.lE-49
1.2E-30

O.OE-00

2.7E-08
9.7E-15
6.OE-15

2.lE-14
2.9E-14
1.lE-02

6.OE-14
2.2E-15
2.6E-06

5.7E-14
4.OE-12
4.2E-13
5.6E-14
4.4E-07

1.lE-08

1.5E-08

2.7E-13

routines ATOTRI and TLR are so fast (TLR is 0(n2) as compared to 0(n3) for

HQR [5]), the total time for calculating up to 20 percent of the eigenpairs is

smaller (and the results more accurate) using the new routines.

The results of running the EISPACK general matrix test suite [10] are

shown in Table III. This test suite consists of 35 small matrices (none

exceeding 20 x 20) that are designed to be pathological with respect to their
eigenvalues and eigenvectors. Most of the matrices are ill-conditioned, some

are defective, some are derogatory, and some are all three. The accuracy and

robustness of the new algorithms are displayed by this test, where we

ACM Transactions on Mathematical Software, Vol. 18,No. 4, December 1992.



400 . J. J. Dongarra et al.

compare the residual from RG to GTINIT and REFINE. GTINIT applies inverse

iteration with Rayleigh quotients to the tridiagonal matrix T until conver-

gence to the desired eigenpair is achieved. The eigenvectors of A are then

obtained by applying the inverse of the transformation matrix N. For refer-

ence, the maximum error (with respect to RG) of the initial eigenvalue

estimate from TLR is given for each matrix.

5. SUMMARY

It is clear from our tests that if all of the eigenpairs are required, then the

EISPACK routine RG is the recommended approach, However, the new

routines presented in this paper are superior in both speed and accuracy to

existing methods (i.e., EISPACK) when only a few (up to 20 percent) of the

eigenpairs of a dense nonsymmetric matrix are required. The demand for

routines to solve such problems is growing rapidly in many areas of computa-

tional science, including quantum chemistry and materials science.
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