REDUCTION OF A GENERAL MATRIX TO TRIDIAGONAL FORM ~

GEORGE A. GEIST

Abstract. An algorithm for reducing a nonsymmetric matrix to tridiagonal form as a first step
toward finding its eigenvalues is described. The algorithm uses a variation of threshold pivoting,
where at each step, the pivot is chosen to minimize the maximum entry in the transformation matrix
that reduces the next column and row of the matrix. Situations are given where the tridiagonalization
process breaks down, and two recovery methods are presented for these situations. Although no
existing tridiagonalization algorithm is guaranteed to succeed, this algorithm is found to be very
robust and fast in practice. A gradual loss of similarity is also observed as the order of the matrix
increases.
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1. Introduction. The standard method for computing all of the eigenvalues of
a dense matrix is based on the QR iteration scheme [5]. In this scheme, orthog-
onal similarity transformations are successively applied to the matrix to reduce it
to quasi-triangular form, so that the eigenvalues appear on the diagonal. Repeated
application of these transformations to a general matrix is prohibitively expensive,
however, so that in practice the original matrix 1s first reduced to a simpler form that
can be preserved during the subsequent iterative phase. For a general matrix, the
initial reduction is usually to upper Hessenberg form (upper triangular except for one
additional subdiagonal) by elementary or orthogonal similarity transformations. The
initial reduction to Hessenberg form requires O(n®) operations, where n is the order
of the matrix. Computation of the eigenvalues of the reduced matrix usually requires
only a few QR iterations per eigenvalue, totaling another O(n®) operations. Both the
initial and iterative phases are costly, but less costly than iterating directly with the
original matrix. This two-phase approach is implemented in the standard EISPACK
software for the general eigenvalue problem [16].

If the original matrix is symmetric, then that symmetry can be preserved by
using orthogonal transformations in the initial reduction, so that the result is in fact
tridiagonal. Although the reduction to tridiagonal form costs O(n®) operations, the
subsequent iterations preserve the tridiagonal form and are much less expensive, so
that the total cost of the iterative phase is reduced to O(n?) operations. Again,
standard software 1s available in EISPACK implementing this two-phase approach for
the symmetric case [16].

The attractively low operation count of iterating with a tridiagonal matrix sug-
gests that the tridiagonal form would be extremely beneficial in the nonsymmetric
case as well. There are two difficulties with such an approach: First, QR iteration
does not preserve the structure of a nonsymmetric tridiagonal matrix. This problem
can be overcome by using LR iteration [15] instead, which preserves the tridiagonal
form. Second, it 1s difficult to reduce a nonsymmetric matrix to tridiagonal form by
similarity transformations in a numerically stable manner. This second problem 1s
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the primary focus of this paper.

The following notational conventions will be used throughout this paper. Lower
case Greek letters will denote scalars; lower case Latin letters will denote vectors.
Components of vectors are denoted by subscripts. Upper case Latin letters will denote
square matrices and a single subscript, when present, denotes the matrix dimension.
Throughout this paper, N is used to represent a matrix that applies a rank one change
to another matrix. Special cases of N include N, and N,, which zero out the next
column and row of a matrix, respectively.

In the early 1960’s there was a great amount of interest and research devoted
to finding a stable way to reduce a general matrix via similarity transformations to
tridiagonal form [12], [14], [17]. The problem is addressed in some detail by Wilkinson
[21], and several algorithms are given, but the overall conclusion was that no general
purpose algorithm existed. Because of the success and numerical stability of the QR
iteration scheme, little research was directed at the problem of reduction to tridiagonal
form for nearly 15 years.

One reason for renewed interest in tridiagonalization i1s the relatively poor per-
formance of the QR iteration on advanced computers. Algorithms for vector su-
percomputers [10] and parallel architectures [7] have been developed for reducing
nonsymmetric matrices to tridiagonal form.

In 1981 Dax and Kaniel published a paper [2] that inspired most of the recent
interest in the problem. They describe experiments with reduction from upper Hes-
senberg form to tridiagonal form using elementary similarity transformations. During
the reduction, they monitor the size of the multipliers as follows. They define a con-
trol parameter for the reduction of row k as my = max;sp+1{|Hr i/ Hr p41]}. I my is
greater than a specified value, u, then breakdown is said to have occurred, and their
algorithm aborts. They observe that for 100 random test matrices of order 50 x 50
the number of breakdowns as a function of the specified value p is:

pn=2 r= 16 12 10 8§ 7
breakdowns 0 1 5 20 41

Dax and Kaniel refer to Wilkinson’s detailed error analysis in [21] and conclude
that with judicious use of double precision there 1s a low probability of having large
errors in eigenvalues computed with the tridiagonal matrix, even when using control
parameters as large as 216,

Wachspress [18] and Watkins [19] focus on the fact that in [2] Dax and Kaniel
did not address possible ways to recover from breakdown during the reduction to
tridiagonal form. Wilkinson states [21, p.404] that

If breakdown occurs in the rth step of the reduction of a Hessenberg matrix

to tridiagonal form we must return to the beginning and compute NAN !

for some N in the hope that failure will be avoided in this matrix.
This recovery method is actually too restrictive. Wachspress and Watkins both de-
scribe efficient methods for finding matrices similar to A without returning to the
beginning and wasting work already performed on the matrix. Hare and Tang [11]
describe a combination of recovery methods and also investigate the effects of inter-
leaving orthogonal and elementary similarity transformations during the tridiagonal-
ization to reduce the number of multipliers that are greater than one.

In the next section we describe the inherent problems of tridiagonalizing nonsym-
metric matrices. In §3 we present a reduction algorithm that incorporates a pivoting
scheme designed to produce better conditioned transformation matrices than previous
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algorithms. We describe two recovery algorithms in §4 that significantly improve the
robustness of the reduction algorithm. Section 5 presents empirical results showing
the accuracy and performance of the new algorithm. While no finite stable tridiago-
nalization algorithm is known [13], the new algorithm significantly broadens the class
of matrices that can be successfully reduced.

2. Tridiagonalization. The direct reduction of a general matrix to tridiagonal
form is difficult because the elementary similarity transformations, which must be
used at some point in the reduction, may have large multipliers. This phenomenon is
illustrated by the following example. First note that computations of the form

Iy Fr_y Iy Fr_y
1 a wh 1 = a wlfG!
Gr_i v Bn_i G-1 Gv GBG™!

preserve the inner product of the kth row and column, since w” G='Gv = w”v. The
tridiagonalization algorithms in [2], [6], [10], [11], [12], [17], [19] are all affected by this
property.

Let the partially reduced matrix have the form shown in Fig. 1. Let w"v = 0

Tre—1
x
x| Wl
v Bn—k

Fi1G. 1. Partially reduced matriz.

and v = Gv, where G is designed to eliminate all but the first element of v. Let
w!l = wT' G~ and partition w? = (w;w7T). Since wlv = vywy, Wy = 0. After all but
the first entry of v have been eliminated, the matrix has the form

Tre—1
X
x|a 0 af
V1
0 Bn—k

Any attempt to avoid the use of the zero as the pivot now destroys the existing
tridiagonal form. This zero pivot will occur regardless of the pivot selection in v or
whether orthogonal transformations are used to eliminate v.

Algorithms that include a stable reduction to upper Hessenberg form as an initial
step to tridiagonal form will likely encounter small pivots during the reduction of the
rows. Stable reduction of the columns tend to make vy large. For example, stable
elementary transformations choose ¥; = max(v;), and orthogonal transformations
make v; = ||v||2. Let w; be the first entry in w?G~!. Since the product of ¥; and
w1, the eventual pivot for the row, is fixed, w; tends to be small, which can lead to
breakdown when reducing the rows.

If wTv = 0, then a breakdown condition will occur no matter what transformation
is used. In this case, the algorithm must abort or apply some recovery method.
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3. A tridiagonalization algorithm. In this section we present an algorithm
that reduces the matrix directly to tridiagonal form by eliminating columns and rows
using elementary similarity transformations so that the matrix always has the form
shown in Fig. 1. This matrix structure allows us the freedom to pivot at each step
to improve the overall stability of the algorithm. For example, the pivot could be
chosen to minimize the maximum multiplier in the column and row reduction, or
the pivot could be chosen to minimize the condition number of the transformation
matrices. While these pivoting heuristics work well, the heuristic we found that works
at least as well and sometimes better is to choose the pivot that minimizes the norm
of the transformation matrix that reduces both the column and row. If C denotes this
transformation matrix, then the norm used is n{max|C;;| : ¢,j = 1,2,--- n} because
it can be computed in constant time for each possible permutation.

At step k of the algorithm shown in Fig. 2, the matrix has the form shown in
Fig. 1. If v or w = 0, then the matrix has been deflated, and step & can be skipped.
Otherwise the algorithm finds the permutation that minimizes the maximum element
n NleC, where N, and N. are elementary matrices such that NCANC_1 reduces
column k and N7} N.AN )N, reduces row k.

This minimization can be done efficiently because of the special structure of
N7LN., which is

1y,

v uT

€T In—k—l

The vector z contains the multipliers used in reducing column k&, and u contains the
negatives of the multipliers used in reducing row k. The pivoting algorithm shown in
Fig. 3 finds the permutation at step k& that minimizes the maximum multiplier used
in the column and row reduction and 5. The term 7 equals 1 — u”z, which can be
simplified to wyv1 /wTv.

If wPv = 0, then the minimization problem has no solution. In this case max(|v;|, |w;|)
is permuted into the pivot location before calling the recovery routine, FIXUP (see
Fig. 4). The recovery routine is also called when the maximum element in N,71N,
exceeds a bound set by the user. If the maximum element is less than the bound,
then the algorithm simply reduces column & followed by row k.

CLAIM. The minimization problem can be solved in O(n—k) time by observing that
for a given permutation, the maximum multipliers in column k and row k, respectively,

are:
— max;s1|v;|

|va
— |vl|maxi>1|wi|.

|w' ]

Proof. Using Fig. 1 as a reference, given that column & is reduced first by an
elementary similarity transformation N, AN !, the expression for m, is obvious. The

form of N, 1s
I
Gn—k
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A2TRI( a, n, tol )

mazxtol = tol
ent =0
m=1
fork=1ton—2
label:
Check number of recovery attempts
if(ent > 2) then
mazxtol = 10 *x maztol, print warning of increase.

ent =0
if(maxtol > 10 * tol) return and execute NEWSTART
end 1f

Find suitable pivot
PIVOT(a, n, k, piv, mazmult, err)
Check for deflation
if(err=1)m=4Fk+1, next k
Interchange row(piv) and row(k)
Interchange column(piv) and column(k)
Check maximum multiplier against tolerance
if( err = 2 or maxzmult > maxtol ) then
FIXUP( a, k, m, n)
ent = ent 4+ 1, print warning
go to label:
endif
Zero out column k
fori=k+2ton
forj=k+1ton
Qi = Qij — Qp41j * Qig/Akt1k
for j=kton
Wjkt1 = Qjk41 + Qij * Qi /Apyik
Zero out row k
fori=k+2ton
forj=k+1ton
Ap41j = Apt1j — Qij * Qki/Ark41
forj=k+1ton
Aji = Qj; + Ajpt1 * Qgi/ Akl
end for

FiG. 2. Algorithm for reducing an n X n matriz a to tridiagonal form while trying to bound all
multipliers below tol.
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PIVOT(a, n, k, piv, mazmult, err )

err =0

maxzmult = oo

Find maximum and next-to-maximum entries in row k£ and column &
maxcol = max( |a;;| [ = k+ 1 to n)

pive = index of maxcol

nmacol = next-to-max( |a;z| | = k+ 1 to n)

mazrow = max( |ag] |i =k + 1 ton)

pivr = index of maxrow

nmarow = next-to-max( |ay| | = k+ 1 to n)

inprod = Z?:k-l—l Qp; * Qg

Check if maximum element in row or column is zero
if( mazcol = 0 or maxrow =0 ) err = 1, return
Check if inner product is zero
if( inprod = 0 ) then

piv = index of max(maxzcol, maxrow)

err = 2

return
endif
Calculate maximum entry of (N, N.); over all permutations ¢
fore=k+1ton

if( ¢ = pive ) maxne = |nmazcol /a;|

else maxne = |maxcol/a;y|

if( ¢ = pivr ) maznr = |a;; * nmarow/inprod|

else maxnr = |a;;, * mazrow/inprod|

mazdiag = |a;x, * ag;/inprod|

temp = max(maxnr, marnc, mazdiag)

if( temp < maxrmult ) then

maxmult = temp
ptv =1
endif

end for

Fi1G. 3. Algorithm for finding the pivot that minimizes the mazimum element in ]\7:1]\7c where
Nr_lNcANc_lNr reduces column k and then row k of the n X n matriz A.
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FIXUP( a, k, m, n)

Apply a random shift

r = random()

Umm = Gmm + 7 * Am4im

Umm+1 = Gmm+1 + 7 * (am+1m+1 - amm)
Amm+2 = T * Am41m+1

Chase bulge down to row k — 1
fori=m+1tok—1

m = ai—1i+1/ai—1i

a;—1541 =0

Qi = Qi + M * g1

Qijp1 = Qg1 + M * (G141 — G5)

Aji42 = M * Q41442

Aj 41541 = Qi41541 — M * Ui414
end for
Fill in row k£ — 1
if(k=m+1)m=r
fori=k+2ton—-1

Ap—1i = M * Ak
end for
Eliminate row k& — 1
fori=k+1ton-—1

M= ap_1;/Ar—1k

ap—1; =0

forj=kton—1

Qg; = Gpj + 1M * Qg5
forj=kton—1
A = Aj; — M * djk

end for

F1G. 4. Recovery algorithm to apply an tmplicit single-shift LR iteration to rows m through k
of the partially reduced matriz.
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and after the transformation is applied, v = Gv and w’ = w’G~'. Thus, w’'v =
wTG='Gv = wTv. Since ; = 0 for i > 1, w191 = wTv. Since N, is elementary,
U1 = vy so viwy = wlv or wy = wTv/vl. Therefore,

max|w;|  |vi| max|w;]|

= = > 1.
T | w0

For each possible choice of permutation only three terms must be evaluated: m., m,.,
and . At step k there are only n—k —1 possible permutations. Thus the permutation
that minimizes the maximum element can be found in O(n — k) time, which totals
O(n?) for the entire reduction.

The complexity of the overall tridiagonalization algorithm given in Fig. 2 is
(4/3)n®+ O(n?) flops, where a flop is defined as a floating point operation of the form
a+bx*c. This complexity is based on the assumption that the recovery routines, which
we discuss in the next section, are called only a constant number of times.

An error analysis of tridiagonalization methods is given in [21]. Dax and Kaniel
[2] also give an error analysis that shows that the bound on the eigenvalue errors
depends on the spectral condition number of the tridiagonal matrix. The potential
for w” v to vanish means that no finite tridiagonalization algorithm can be guaranteed
to succeed. Even if the multipliers are all bounded below some modest value, say 10,
there is the potential for catastrophic roundoff error.

On the other hand, this large growth has not been observed in practice using our
algorithm. Instead, a gradual loss of similarity is observed as the matrix size increases.
This degradation is conjectured to be caused by accumulated roundoff from using
multipliers larger than one. Research continues into bounding the expected growth,
and a future report will describe the results.

4. Recovery methods. In this section we describe the two recovery algorithms
used in conjunction with the threshold pivoting algorithm. In most tridiagonalization
schemes breakdown is defined as the situation where a multiplier (in our case an
element in N7 N,) has exceeded some tolerance. When breakdown occurs, a number
of options are available to circumvent the problem. Sometimes a local transformation
can decrease the size of the multiplier so that the reduction can continue [11], but
local methods cannot be robust because the tridiagonal form M AM ~! is unique once
the first column and row of the transformation matrix M are fixed [13]. Thus, if
this unique form has a small pivot, breakdown cannot be avoided without changing
the first row or column. In [21], Wilkinson states that if a breakdown occurs, one
can go back to the beginning and apply the transformation NAN~! in the hope
that breakdown will not occur again. No method of choosing N has been found that
guarantees that the breakdown condition found in A will not exist in NAN~!. For
this reason, all proposed recovery methods choose another N and repeat the process
if the previous choice of N fails to eliminate the breakdown condition.

The two recovery methods we propose differ in their choice of N, the amount of
work they perform, and the matrix to which they are applied. In the first method,
which is a variant of recovery methods proposed by Wachspress [8] and Watkins [19], a
single random implicit single-shift LR iteration is applied to the matrix from the point
of the last deflation down to row k. Since the partially reduced matrix is tridiagonal
down to row k, one can start the iteration with either of the following forms of N:

1 r 1 0
0 1 0 r 1 0
O | Inos O | Inos
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Our first recovery method applies these two starting matrices alternately and uses
a random value uniformly distributed on [0.1,1] for ». Figure 4 shows the FIXUP
algorithm, which uses the left starting matrix above. Assuming no deflations have
occurred, the first operations of the FIXUP algorithm introduce a nonzero in the ajs
position. This “bulge” is then chased down the matrix with elementary similarity
transformations to the point of the previous breakdown. Given that the breakdown
occurs at row k, this chasing procedure fills in row & — 1, which then must be annihi-
lated to return the matrix to its prerecovery structure.

If breakdown occurs during the recovery or if the original breakdown condition
persists after the recovery step, the recovery method is repeated with the alternate
form of N. After three consecutive unsuccessful recovery attempts, the multiplier
tolerance is temporarily increased by a factor of 10. After three additional unsuccessful
attempts at this higher tolerance, the recovery attempts on the partially reduced
matrix stop, and our second recovery method, NEWSTART, is initiated.

A small number of consecutive failures of the first recovery method is usually
indicative of a matrix with a large number of small inner products. When this occurs,
a random orthogonal matrix @ is applied to the original matrix, and the reduction is
restarted with the modified matrix QAQT. The purpose of this operation is to reduce
the probability of small inner products occurring in the modified matrix. The algo-
rithm is simple and efficient to apply, requiring only O(n?) flops to execute, because
Q is chosen to be a Householder transformation @ = (I — 2ww?). This routine, which
we call NEWSTART, is initiated only as a last resort because it requires restarting
the reduction.

5. Results. We report on empirical studies of three aspects of the new algo-
rithm: its speed, robustness, and accuracy. All of the studies are based on finding
the eigenvalues of nonsymmetric matrices, which is the primary use of the tridiag-
onalization algorithm. All computations were performed in double precision on a
Sun 3/280.

To perform these studies we developed an algorithm, which we will refer to as
TLR, for finding the eigenvalues of nonsymmetric tridiagonal matrices. TLR initially
applies a diagonal similarity transformation to the tridiagonal matrix to scale the
superdiagonal to contain all ones. Wilkinson [21] suggests this transformation because
the superdiagonal is invariant under implicit LR iterations. Thus, the transformation
saves space and floating point operations. In fact, the storage and flops per iteration
are the same as for the symmetric tridiagonal case when using LR iteration. TLR
applies implicit double shift LR iterations to the scaled tridiagonal matrix until all
the eigenvalues are found. If the LR iteration breaks down due to encountering a
small pivot element, (which can occur because pivoting is not performed) or it fails
to converge to an eigenvalue after 30 iterations, then an arbitrary shift is applied to
the matrix.

The potential dangers of using LR iteration are well documented [21], although
some recent research [20] has attempted to put the algorithm on firmer theoretical
ground. We chose LR iteration because it preserves nonsymmetric tridiagonal form.
Our experience with TLR has been positive, as it has never failed to converge. On the
other hand, we have seen tridiagonal matrices where the eigenvalues computed with
TLR are not as accurate as the results from the standard EISPACK routines. For the
interested reader, Dax and Kaniel [2] present more elaborate methods to improve the
stability of the LR iteration and to refine the eigenvalues of the tridiagonal matrix
iteratively.
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A second alternative, used in [10], is to transform the real nonsymmetric tridiag-
onal matrix into a complex symmetric tridiagonal matrix. This is done by scaling the
ith subdiagonal and superdiagonal entries to \/b;c;, where b; and ¢; are opposing sub-
diagonal and superdiagonal entries, respectively. Then a complex arithmetic version
of the QL iteration can be applied to finding all the eigenvalues. Details of the algo-
rithm can be found in [1] along with a discussion of complex symmetric tridiagonal
matrices and potential problems with finding their eigenvalues.

Table 1 compares the execution times in seconds of our algorithm with the EIS-
PACK routines: ELMHES, ORTHES, and HQR for a series of test matrices ranging
in size from 50 to 300. The matrices were random with entries distributed uniformly
over the interval [—1, 1]. ELMHES reduces A to Hessenberg form using stabilized ele-
mentary similarity transformations while ORTHES reduces A to Hessenberg form H
using Householder transformations. HQR finds the eigenvalues of H using an implicit
double shift QR iteration. Our algorithms are presented in the table as A2TRI and
TLR. A2TRI reduces A directly to tridiagonal form 7" as described in §3. TLR finds
the eigenvalues of 7. The time for either ELMHES or ORTHES should be added to
the time for HQR and compared with the sum of the times for A2TRI and TLR.

TaBLE 1
FEzecution times in seconds on a Sun 3/280 for our new routines

and the standard EISPACK routines.

EISPACK NEW
n | ELMHES | ORTHES HQR | A2TRI | TLR
50 2.70 4.66 12.92 3.80 | 0.70
100 21.58 37.60 92.08 32.90 | 2.70
128 44.92 80.06 | 208.62 65.01 | 4.46
150 72.28 136.88 | 334.56 || 110.62 | 6.72
200 173.20 314.78 | 667.78 || 240.02 | 10.86
250 338.54 631.42 | 1388.36 || 509.94 | 16.94
300 582.64 1136.34 | 2305.14 || 893.48 | 23.84

It is clear from the table that our method can find the eigenvalues of a dense non-
symmetric matrix much faster than the EISPACK routines. A complexity analysis,
where low order terms are ignored, shows that TLR requires bn flops per iteration ver-
sus 4n? flops for HQR. While the number of iterations varies between TLR and HQR,
they both require only a few, usually fewer than 5, iterations per eigenvalue. Further,
the arithmetic complexities of ELMHES and ORTHES are (5/6)n® and (5/3)n3, re-
spectively, while the complexity of A2TRI is (4/3)n3 flops, assuming A2TRI needs to
apply FIXUP only a constant number of times. The results in Table 1 reflect speedups
greater than three for A2TRI/TLR over ELMHES/HQR, which are consistent with
the relative complexities of the routines.

Random matrices are not necessarily good choices for testing the robustness of the
tridiagonalization. Therefore, we input most of the nonsymmetric eigenvalue test ma-
trices contained in the book by Gregory and Karney [9] as well as the EISPACK test
suite of real general matrices into our algorithm. The test set included ill-conditioned,
defective, and derogatory matrices in sizes up to 20 x 20. All were reduced success-
fully, although several required calls to the routine FIXUP. One matrix, Wilkinson’s
notoriously ill-conditioned matrix, required a call to the routine NEWSTART before
it could be reduced. The eigenvalues calculated from the test matrices in Gregory and
Karney were accurate to the expected number of digits given the condition numbers of
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the problems except for Wilkinson’s matrix where only three digits of accuracy were
obtained, instead of the expected eight digits. Table 2 gives the number of fixups
executed by A2TRI and the largest relative error in any eigenvalue for each problem
in the EISPACK test suite. Whenever the error is greater than 10713, the condition
number of the corresponding eigenvalue is also given. In four cases, no error is made
because A2TRI is able to permute the matrix into triangular form. In the two cases in
which the relative error is greater than 1, the tridiagonal matrix returned by A2TRI
is similar to the original matrix and all the error occurs in TLR. (This is not true
in general.) There are also four cases where a significant amount of work is avoided
because the problem deflates during the reduction to tridiagonal form. The apparent
bad behavior in problem 2 is deceptive, because this problem has eigenvalues (A;)
spread over six orders of magnitude. Let A; be the exact eigenvalues of A. Wilkinson
[21] gives a bound on the absolute error of the eigenvalues as

[ Alle

bl

|Ai = Ai] <
Sq
where ¢ is machine precision and s; is the inner product of the normalized left and
right eigenvectors of A;. For problem 2 || A ||~ 10'° and s; ~ 1. Assuming ¢ = 10716,
the absolute error for the A; in problem 2 should be better than 10~° and in fact we
see an absolute error of 1078,

To determine the relative accuracy of the new algorithms, two comparisons were
performed on a range of problem sizes. In the first comparison, the eigenvalues of the
tridiagonal matrix were computed with HQR and compared with the corresponding
eigenvalues of the original matrix as computed with ORTHES/HQR. This measures
the loss of similarity caused by the reduction to tridiagonal form. The second com-
parison was between the eigenvalues computed by A2TRI/TLR and the eigenvalues
computed by ORTHES/HQR. Figure 5 presents the accuracy seen during these com-
parisons.

10-°
1077+
107% 7 A2TRI/TLR

. 10=2
maximum
relative 10~10
difference from 10-11 -
ORTHES/HQR
10-12 - A2TRI/HQR

10—13 |
10—14 |

10-15 T T T T
50 100 150 200

n

Fic. 5. Typical degradation of eigenvalue accuracy seen with A2TRI and TLR for random
orthogonal matrices.

The graph clearly shows that the accuracy decreases as the matrix size increases.
Similar results have been observed with other tridiagonalization methods [2], [11].
All calculations were performed in double precision. To avoid variations due to ill-
conditioned eigenvalues, random orthogonal matrices were used in these tests. The
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TABLE 2
Number of fizups, mazimum relative error in any eigenvalue, and comments (1/s;
is the condition number of the corresponding eigenvalue) for A2TRI/TLR on the EIS-
PACK test suite.

EISPACK Test Suite of Real General Matrices

Problem | Number | Relative error Comments
number | of fixups in A (1/s; =condition number of A;)
1 0 1013
2 0 10~ 1/s; =1
3 3 10=° 1/s; = 107
4 0 10713
5 0 10713
6 0 10713
7 9 1079 1/s; = 10%°
8 0 0 zero matrix
9 0 10=° 1/s; = 10%°
10 1 10714
11 0 10713
12 0 2.5 1/s; = 1015, Tridiagonal OK
13 2 10714
14 2 10713
15 0 10713
16 0 0 permuted to triangular form
17 0 0 permuted to triangular form
18 0 0 permuted to triangular form
19 0 1077 1/s; = 10*2
20 1 10716
21 1 10716
22 3 10714
23 4 10713
24 4 107° 1/s; = 1023
25 2 10716
26 0 10716 deflated during reduction
27 0 107 1/s; = oo, Tridiagonal OK
28 0 10716
29 1 10716 deflated during reduction
30 6 10713
31 0 10~12 1/s; = 1013
32 0 1073 1/s; = 101
33 0 10716 deflated during reduction
34 0 10716 deflated during reduction
35 0 101! 1/s; = 101
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overall error of the new algorithms on random nonorthogonal matrices was comparable
but showed a larger variation between problems.

The main advantage of a faster algorithm is the ability to solve larger problems,
but the results of our study indicate that the accuracy of the larger problems may be
poor. Methods exist for iteratively refining the accuracy of eigenvalues [4]. Presently,
we are investigating an algorithm that improves the accuracy of the eigenvalues de-
termined by TLR and avoids factorization of the original matrix by exploiting the
already reduced tridiagonal form T. The algorithm differs from the iterative refine-
ment in [2] in that the eigenvalues converge to the eigenvalues of the original matrix
rather than those of T. Details of this work can be found in [3].

We have presented an algorithm for reducing a general matrix directly to tridi-
agonal form. Pivots are chosen that minimize the maximum element in the transfor-
mation matrices. We have described situations where the condition number of the
transformation matrices can be large, and we have presented two recovery methods,
which work well in practice when such situations arise. The new algorithm is fast and
significantly broadens the class of matrices that can be successfully reduced.
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