
REDUCTION OF A GENERAL MATRIX TO TRIDIAGONAL FORM �GEORGE A. GEIST yAbstract. An algorithm for reducing a nonsymmetric matrix to tridiagonal form as a �rst steptoward �nding its eigenvalues is described. The algorithm uses a variation of threshold pivoting,where at each step, the pivot is chosen to minimize the maximum entry in the transformationmatrixthat reduces the next column and row of the matrix. Situations are given where the tridiagonalizationprocess breaks down, and two recovery methods are presented for these situations. Although noexisting tridiagonalization algorithm is guaranteed to succeed, this algorithm is found to be veryrobust and fast in practice. A gradual loss of similarity is also observed as the order of the matrixincreases.Key words. tridiagonalization, nonsymmetric, eigenvaluesAMS(MOS) subject classi�cations. 151. Introduction. The standard method for computing all of the eigenvalues ofa dense matrix is based on the QR iteration scheme [5]. In this scheme, orthog-onal similarity transformations are successively applied to the matrix to reduce itto quasi-triangular form, so that the eigenvalues appear on the diagonal. Repeatedapplication of these transformations to a general matrix is prohibitively expensive,however, so that in practice the original matrix is �rst reduced to a simpler form thatcan be preserved during the subsequent iterative phase. For a general matrix, theinitial reduction is usually to upper Hessenberg form (upper triangular except for oneadditional subdiagonal) by elementary or orthogonal similarity transformations. Theinitial reduction to Hessenberg form requires O(n3) operations, where n is the orderof the matrix. Computation of the eigenvalues of the reduced matrix usually requiresonly a few QR iterations per eigenvalue, totaling another O(n3) operations. Both theinitial and iterative phases are costly, but less costly than iterating directly with theoriginal matrix. This two-phase approach is implemented in the standard EISPACKsoftware for the general eigenvalue problem [16].If the original matrix is symmetric, then that symmetry can be preserved byusing orthogonal transformations in the initial reduction, so that the result is in facttridiagonal. Although the reduction to tridiagonal form costs O(n3) operations, thesubsequent iterations preserve the tridiagonal form and are much less expensive, sothat the total cost of the iterative phase is reduced to O(n2) operations. Again,standard software is available in EISPACK implementing this two-phase approach forthe symmetric case [16].The attractively low operation count of iterating with a tridiagonal matrix sug-gests that the tridiagonal form would be extremely bene�cial in the nonsymmetriccase as well. There are two di�culties with such an approach: First, QR iterationdoes not preserve the structure of a nonsymmetric tridiagonal matrix. This problemcan be overcome by using LR iteration [15] instead, which preserves the tridiagonalform. Second, it is di�cult to reduce a nonsymmetric matrix to tridiagonal form bysimilarity transformations in a numerically stable manner. This second problem is� Received by the editors April 17, 1989; accepted for publication (in revised form) May 3, 1990.y Mathematical Sciences Section, Oak Ridge National Laboratory, P.O. Box 2009, Oak Ridge,Tennessee 37831-8083. This research was supported by the Applied Mathematical Sciences Re-search Program, O�ce of Energy Research, U.S. Department of Energy, under contract DE-AC05-84OR21400 with Martin Marietta Energy Systems, Inc.1



2 G. A. Geistthe primary focus of this paper.The following notational conventions will be used throughout this paper. Lowercase Greek letters will denote scalars; lower case Latin letters will denote vectors.Components of vectors are denoted by subscripts. Upper case Latin letters will denotesquare matrices and a single subscript, when present, denotes the matrix dimension.Throughout this paper, N is used to represent a matrix that applies a rank one changeto another matrix. Special cases of N include Nc and Nr , which zero out the nextcolumn and row of a matrix, respectively.In the early 1960's there was a great amount of interest and research devotedto �nding a stable way to reduce a general matrix via similarity transformations totridiagonal form [12], [14], [17]. The problem is addressed in some detail by Wilkinson[21], and several algorithms are given, but the overall conclusion was that no generalpurpose algorithm existed. Because of the success and numerical stability of the QRiteration scheme, little research was directed at the problem of reduction to tridiagonalform for nearly 15 years.One reason for renewed interest in tridiagonalization is the relatively poor per-formance of the QR iteration on advanced computers. Algorithms for vector su-percomputers [10] and parallel architectures [7] have been developed for reducingnonsymmetric matrices to tridiagonal form.In 1981 Dax and Kaniel published a paper [2] that inspired most of the recentinterest in the problem. They describe experiments with reduction from upper Hes-senberg form to tridiagonal form using elementary similarity transformations. Duringthe reduction, they monitor the size of the multipliers as follows. They de�ne a con-trol parameter for the reduction of row k as mk = maxi>k+1fjHk;i=Hk;k+1jg. If mk isgreater than a speci�ed value, �, then breakdown is said to have occurred, and theiralgorithm aborts. They observe that for 100 random test matrices of order 50 � 50the number of breakdowns as a function of the speci�ed value � is:� = 2r r = 16 12 10 8 7breakdowns 0 1 5 20 41Dax and Kaniel refer to Wilkinson's detailed error analysis in [21] and concludethat with judicious use of double precision there is a low probability of having largeerrors in eigenvalues computed with the tridiagonal matrix, even when using controlparameters as large as 216.Wachspress [18] and Watkins [19] focus on the fact that in [2] Dax and Kanieldid not address possible ways to recover from breakdown during the reduction totridiagonal form. Wilkinson states [21, p.404] thatIf breakdown occurs in the rth step of the reduction of a Hessenberg matrixto tridiagonal form we must return to the beginning and compute NAN�1for some N in the hope that failure will be avoided in this matrix.This recovery method is actually too restrictive. Wachspress and Watkins both de-scribe e�cient methods for �nding matrices similar to A without returning to thebeginning and wasting work already performed on the matrix. Hare and Tang [11]describe a combination of recovery methods and also investigate the e�ects of inter-leaving orthogonal and elementary similarity transformations during the tridiagonal-ization to reduce the number of multipliers that are greater than one.In the next section we describe the inherent problems of tridiagonalizing nonsym-metric matrices. In x3 we present a reduction algorithm that incorporates a pivotingscheme designed to produce better conditioned transformation matrices than previous



Reduction of a General Matrix to Tridiagonal Form 3algorithms. We describe two recovery algorithms in x4 that signi�cantly improve therobustness of the reduction algorithm. Section 5 presents empirical results showingthe accuracy and performance of the new algorithm. While no �nite stable tridiago-nalization algorithm is known [13], the new algorithm signi�cantly broadens the classof matrices that can be successfully reduced.2. Tridiagonalization. The direct reduction of a general matrix to tridiagonalform is di�cult because the elementary similarity transformations, which must beused at some point in the reduction, may have large multipliers. This phenomenon isillustrated by the following example. First note that computations of the form0@ Ik�1 1 Gn�k1A0@Fk�1 � wTv Bn�k 1A0@ Ik�1 1 G�11A = 0@Fk�1 � wTG�1Gv GBG�11Apreserve the inner product of the kth row and column, since wTG�1Gv = wTv. Thetridiagonalization algorithms in [2], [6], [10], [11], [12], [17], [19] are all a�ected by thisproperty.Let the partially reduced matrix have the form shown in Fig. 1. Let wT v = 00BB@ Tk�1 �� � wTv Bn�k 1CCAFig. 1. Partially reduced matrix.and �v = Gv, where G is designed to eliminate all but the �rst element of v. Let�wT = wTG�1 and partition �wT = ( �w1 ~wT ). Since wTv = �v1 �w1, �w1 = 0. After all butthe �rst entry of v have been eliminated, the matrix has the form0BBBB@ Tk�1 �� � 0 ~wT�v10 �Bn�k 1CCCCA :Any attempt to avoid the use of the zero as the pivot now destroys the existingtridiagonal form. This zero pivot will occur regardless of the pivot selection in v orwhether orthogonal transformations are used to eliminate v.Algorithms that include a stable reduction to upper Hessenberg form as an initialstep to tridiagonal form will likely encounter small pivots during the reduction of therows. Stable reduction of the columns tend to make �v1 large. For example, stableelementary transformations choose �v1 = max(vi), and orthogonal transformationsmake �v1 = jjvjj2. Let �w1 be the �rst entry in wTG�1. Since the product of �v1 and�w1, the eventual pivot for the row, is �xed, �w1 tends to be small, which can lead tobreakdown when reducing the rows.If wTv = 0, then a breakdown condition will occur no matter what transformationis used. In this case, the algorithm must abort or apply some recovery method.



4 G. A. Geist3. A tridiagonalization algorithm. In this section we present an algorithmthat reduces the matrix directly to tridiagonal form by eliminating columns and rowsusing elementary similarity transformations so that the matrix always has the formshown in Fig. 1. This matrix structure allows us the freedom to pivot at each stepto improve the overall stability of the algorithm. For example, the pivot could bechosen to minimize the maximum multiplier in the column and row reduction, orthe pivot could be chosen to minimize the condition number of the transformationmatrices. While these pivoting heuristics work well, the heuristic we found that worksat least as well and sometimes better is to choose the pivot that minimizes the normof the transformation matrix that reduces both the column and row. If C denotes thistransformation matrix, then the norm used is nfmaxjCijj : i; j = 1; 2; � � � ; ng becauseit can be computed in constant time for each possible permutation.At step k of the algorithm shown in Fig. 2, the matrix has the form shown inFig. 1. If v or w = 0, then the matrix has been de
ated, and step k can be skipped.Otherwise the algorithm �nds the permutation that minimizes the maximum elementin N�1r Nc, where Nr and Nc are elementary matrices such that NcAN�1c reducescolumn k and N�1r (NcAN�1c )Nr reduces row k.This minimization can be done e�ciently because of the special structure ofN�1r Nc, which is 0BB@ Ik 
 uTx In�k�1 1CCA :The vector x contains the multipliers used in reducing column k, and u contains thenegatives of the multipliers used in reducing row k. The pivoting algorithm shown inFig. 3 �nds the permutation at step k that minimizes the maximum multiplier usedin the column and row reduction and 
. The term 
 equals 1 � uTx, which can besimpli�ed to w1v1=wT v.IfwTv = 0, then the minimizationproblem has no solution. In this case max(jvij; jwij)is permuted into the pivot location before calling the recovery routine, FIXUP (seeFig. 4). The recovery routine is also called when the maximum element in N�1r Ncexceeds a bound set by the user. If the maximum element is less than the bound,then the algorithm simply reduces column k followed by row k.Claim. The minimization problem can be solved in O(n�k) time by observing thatfor a given permutation, the maximum multipliers in column k and row k, respectively,are: mc = maxi>1jvijjv1jmr = jv1jmaxi>1jwijjwT vj :Proof. Using Fig. 1 as a reference, given that column k is reduced �rst by anelementary similarity transformation NcAN�1c , the expression for mc is obvious. Theform of Nc is � Ik Gn�k �



Reduction of a General Matrix to Tridiagonal Form 5A2TRI( a, n, tol )maxtol = tolcnt = 0m = 1for k = 1 to n� 2label: Check number of recovery attemptsif(cnt > 2) thenmaxtol = 10 �maxtol, print warning of increase.cnt = 0if(maxtol > 10 � tol) return and execute NEWSTARTend ifFind suitable pivotPIVOT(a, n, k, piv, maxmult, err)Check for de
ationif( err = 1 ) m = k + 1, next kInterchange row(piv) and row(k)Interchange column(piv) and column(k)Check maximummultiplier against toleranceif( err = 2 or maxmult > maxtol ) thenFIXUP( a, k, m, n )cnt = cnt+ 1, print warninggo to label:endifZero out column kfor i = k + 2 to nfor j = k + 1 to naij = aij � ak+1j � aik=ak+1kfor j = k to najk+1 = ajk+1 + aij � aik=ak+1kZero out row kfor i = k + 2 to nfor j = k + 1 to nak+1j = ak+1j � aij � aki=akk+1for j = k + 1 to naji = aji + ajk+1 � aki=akk+1end forFig. 2. Algorithm for reducing an n� n matrix a to tridiagonal form while trying to bound allmultipliers below tol.



6 G. A. GeistPIVOT(a, n, k, piv, maxmult, err )err = 0maxmult =1Find maximum and next-to-maximum entries in row k and column kmaxcol = max( jaikj ji = k + 1 to n)pivc = index of maxcolnmxcol = next-to-max( jaikj ji = k + 1 to n)maxrow = max( jakij ji = k + 1 to n)pivr = index of maxrownmxrow = next-to-max( jakij ji = k + 1 to n)inprod =Pni=k+1 aki � aikCheck if maximum element in row or column is zeroif( maxcol = 0 or maxrow = 0 ) err = 1, returnCheck if inner product is zeroif( inprod = 0 ) thenpiv = index of max(maxcol;maxrow)err = 2returnendifCalculate maximum entry of (NrNc)i over all permutations ifor i = k + 1 to nif( i = pivc ) maxnc = jnmxcol=aikjelse maxnc = jmaxcol=aikjif( i = pivr ) maxnr = jaik � nmxrow=inprodjelse maxnr = jaik �maxrow=inprodjmaxdiag = jaik � aki=inprodjtemp = max(maxnr;maxnc;maxdiag)if( temp < maxmult ) thenmaxmult = temppiv = iendifend forFig. 3. Algorithm for �nding the pivot that minimizes the maximum element in N�1r Nc whereN�1r NcAN�1c Nr reduces column k and then row k of the n� n matrix A.



Reduction of a General Matrix to Tridiagonal Form 7FIXUP( a, k, m, n )Apply a random shiftr = random()amm = amm + r � am+1mamm+1 = amm+1 + r � (am+1m+1 � amm)amm+2 = r � am+1m+1Chase bulge down to row k � 1for i = m + 1 to k � 1m = ai�1i+1=ai�1iai�1i+1 = 0aii = aii +m � ai+1iaii+1 = aii+1 +m � (ai+1i+1 � aii)aii+2 = m � ai+1i+2ai+1i+1 = ai+1i+1 �m � ai+1iend forFill in row k � 1if (k = m + 1) m = rfor i = k + 2 to n� 1ak�1i = m � akiend forEliminate row k � 1for i = k + 1 to n� 1m = ak�1i=ak�1kak�1i = 0for j = k to n� 1akj = akj +m � aijfor j = k to n� 1aji = aji �m � ajkend forFig. 4. Recovery algorithm to apply an implicit single-shift LR iteration to rows m through kof the partially reduced matrix.



8 G. A. Geistand after the transformation is applied, �v = Gv and �wT = wTG�1. Thus, �wT �v =wTG�1Gv = wTv. Since �vi = 0 for i > 1, �w1�v1 = wTv. Since Nc is elementary,�v1 = v1 so v1 �w1 = wTv or �w1 = wTv=v1. Therefore,mr = maxjwijj �w1j = jv1j maxjwijjwT vj ; i > 1:For each possible choice of permutation only three terms must be evaluated: mc, mr ,and 
. At step k there are only n�k�1 possible permutations. Thus the permutationthat minimizes the maximum element can be found in O(n � k) time, which totalsO(n2) for the entire reduction.The complexity of the overall tridiagonalization algorithm given in Fig. 2 is(4=3)n3+O(n2) 
ops, where a 
op is de�ned as a 
oating point operation of the forma+b�c. This complexity is based on the assumption that the recovery routines, whichwe discuss in the next section, are called only a constant number of times.An error analysis of tridiagonalization methods is given in [21]. Dax and Kaniel[2] also give an error analysis that shows that the bound on the eigenvalue errorsdepends on the spectral condition number of the tridiagonal matrix. The potentialfor wT v to vanish means that no �nite tridiagonalization algorithm can be guaranteedto succeed. Even if the multipliers are all bounded below some modest value, say 10,there is the potential for catastrophic roundo� error.On the other hand, this large growth has not been observed in practice using ouralgorithm. Instead, a gradual loss of similarity is observed as the matrix size increases.This degradation is conjectured to be caused by accumulated roundo� from usingmultipliers larger than one. Research continues into bounding the expected growth,and a future report will describe the results.4. Recovery methods. In this section we describe the two recovery algorithmsused in conjunction with the threshold pivoting algorithm. In most tridiagonalizationschemes breakdown is de�ned as the situation where a multiplier (in our case anelement in N�1r Nc) has exceeded some tolerance. When breakdown occurs, a numberof options are available to circumvent the problem. Sometimes a local transformationcan decrease the size of the multiplier so that the reduction can continue [11], butlocal methods cannot be robust because the tridiagonal formMAM�1 is unique oncethe �rst column and row of the transformation matrix M are �xed [13]. Thus, ifthis unique form has a small pivot, breakdown cannot be avoided without changingthe �rst row or column. In [21], Wilkinson states that if a breakdown occurs, onecan go back to the beginning and apply the transformation NAN�1 in the hopethat breakdown will not occur again. No method of choosing N has been found thatguarantees that the breakdown condition found in A will not exist in NAN�1. Forthis reason, all proposed recovery methods choose another N and repeat the processif the previous choice of N fails to eliminate the breakdown condition.The two recovery methods we propose di�er in their choice of N , the amount ofwork they perform, and the matrix to which they are applied. In the �rst method,which is a variant of recovery methods proposed by Wachspress [8] and Watkins [19], asingle random implicit single-shift LR iteration is applied to the matrix from the pointof the last de
ation down to row k. Since the partially reduced matrix is tridiagonaldown to row k, one can start the iteration with either of the following forms of N :0@ 1 r0 1 OO In�2 1A 0@ 1 0r 1 OO In�2 1A :



Reduction of a General Matrix to Tridiagonal Form 9Our �rst recovery method applies these two starting matrices alternately and usesa random value uniformly distributed on [0.1,1] for r. Figure 4 shows the FIXUPalgorithm, which uses the left starting matrix above. Assuming no de
ations haveoccurred, the �rst operations of the FIXUP algorithm introduce a nonzero in the a13position. This \bulge" is then chased down the matrix with elementary similaritytransformations to the point of the previous breakdown. Given that the breakdownoccurs at row k, this chasing procedure �lls in row k� 1, which then must be annihi-lated to return the matrix to its prerecovery structure.If breakdown occurs during the recovery or if the original breakdown conditionpersists after the recovery step, the recovery method is repeated with the alternateform of N . After three consecutive unsuccessful recovery attempts, the multipliertolerance is temporarily increased by a factor of 10. After three additional unsuccessfulattempts at this higher tolerance, the recovery attempts on the partially reducedmatrix stop, and our second recovery method, NEWSTART, is initiated.A small number of consecutive failures of the �rst recovery method is usuallyindicative of a matrix with a large number of small inner products. When this occurs,a random orthogonal matrix Q is applied to the original matrix, and the reduction isrestarted with the modi�ed matrix QAQT . The purpose of this operation is to reducethe probability of small inner products occurring in the modi�ed matrix. The algo-rithm is simple and e�cient to apply, requiring only O(n2) 
ops to execute, becauseQ is chosen to be a Householder transformationQ = (I�2wwT ). This routine, whichwe call NEWSTART, is initiated only as a last resort because it requires restartingthe reduction.5. Results. We report on empirical studies of three aspects of the new algo-rithm: its speed, robustness, and accuracy. All of the studies are based on �ndingthe eigenvalues of nonsymmetric matrices, which is the primary use of the tridiag-onalization algorithm. All computations were performed in double precision on aSun 3/280.To perform these studies we developed an algorithm, which we will refer to asTLR, for �nding the eigenvalues of nonsymmetric tridiagonal matrices. TLR initiallyapplies a diagonal similarity transformation to the tridiagonal matrix to scale thesuperdiagonal to contain all ones. Wilkinson [21] suggests this transformation becausethe superdiagonal is invariant under implicit LR iterations. Thus, the transformationsaves space and 
oating point operations. In fact, the storage and 
ops per iterationare the same as for the symmetric tridiagonal case when using LR iteration. TLRapplies implicit double shift LR iterations to the scaled tridiagonal matrix until allthe eigenvalues are found. If the LR iteration breaks down due to encountering asmall pivot element, (which can occur because pivoting is not performed) or it failsto converge to an eigenvalue after 30 iterations, then an arbitrary shift is applied tothe matrix.The potential dangers of using LR iteration are well documented [21], althoughsome recent research [20] has attempted to put the algorithm on �rmer theoreticalground. We chose LR iteration because it preserves nonsymmetric tridiagonal form.Our experience with TLR has been positive, as it has never failed to converge. On theother hand, we have seen tridiagonal matrices where the eigenvalues computed withTLR are not as accurate as the results from the standard EISPACK routines. For theinterested reader, Dax and Kaniel [2] present more elaborate methods to improve thestability of the LR iteration and to re�ne the eigenvalues of the tridiagonal matrixiteratively.



10 G. A. GeistA second alternative, used in [10], is to transform the real nonsymmetric tridiag-onal matrix into a complex symmetric tridiagonal matrix. This is done by scaling theith subdiagonal and superdiagonal entries to pbici, where bi and ci are opposing sub-diagonal and superdiagonal entries, respectively. Then a complex arithmetic versionof the QL iteration can be applied to �nding all the eigenvalues. Details of the algo-rithm can be found in [1] along with a discussion of complex symmetric tridiagonalmatrices and potential problems with �nding their eigenvalues.Table 1 compares the execution times in seconds of our algorithm with the EIS-PACK routines: ELMHES, ORTHES, and HQR for a series of test matrices rangingin size from 50 to 300. The matrices were random with entries distributed uniformlyover the interval [�1; 1]. ELMHES reduces A to Hessenberg form using stabilized ele-mentary similarity transformations while ORTHES reduces A to Hessenberg form Husing Householder transformations. HQR �nds the eigenvalues of H using an implicitdouble shift QR iteration. Our algorithms are presented in the table as A2TRI andTLR. A2TRI reduces A directly to tridiagonal form T as described in x3. TLR �ndsthe eigenvalues of T . The time for either ELMHES or ORTHES should be added tothe time for HQR and compared with the sum of the times for A2TRI and TLR.Table 1Execution times in seconds on a Sun 3/280 for our new routinesand the standard EISPACK routines.EISPACK NEWn ELMHES ORTHES HQR A2TRI TLR50 2.70 4.66 12.92 3.80 0.70100 21.58 37.60 92.08 32.90 2.70128 44.92 80.06 208.62 65.01 4.46150 72.28 136.88 334.56 110.62 6.72200 173.20 314.78 667.78 240.02 10.86250 338.54 631.42 1388.36 509.94 16.94300 582.64 1136.34 2305.14 893.48 23.84It is clear from the table that our method can �nd the eigenvalues of a dense non-symmetric matrix much faster than the EISPACK routines. A complexity analysis,where low order terms are ignored, shows that TLR requires 5n 
ops per iteration ver-sus 4n2 
ops for HQR. While the number of iterations varies between TLR and HQR,they both require only a few, usually fewer than 5, iterations per eigenvalue. Further,the arithmetic complexities of ELMHES and ORTHES are (5=6)n3 and (5=3)n3, re-spectively, while the complexity of A2TRI is (4=3)n3 
ops, assuming A2TRI needs toapply FIXUP only a constant number of times. The results in Table 1 re
ect speedupsgreater than three for A2TRI/TLR over ELMHES/HQR, which are consistent withthe relative complexities of the routines.Randommatrices are not necessarily good choices for testing the robustness of thetridiagonalization. Therefore, we input most of the nonsymmetric eigenvalue test ma-trices contained in the book by Gregory and Karney [9] as well as the EISPACK testsuite of real general matrices into our algorithm. The test set included ill-conditioned,defective, and derogatory matrices in sizes up to 20 � 20. All were reduced success-fully, although several required calls to the routine FIXUP. One matrix, Wilkinson'snotoriously ill-conditioned matrix, required a call to the routine NEWSTART beforeit could be reduced. The eigenvalues calculated from the test matrices in Gregory andKarney were accurate to the expected number of digits given the condition numbers of



Reduction of a General Matrix to Tridiagonal Form 11the problems except for Wilkinson's matrix where only three digits of accuracy wereobtained, instead of the expected eight digits. Table 2 gives the number of �xupsexecuted by A2TRI and the largest relative error in any eigenvalue for each problemin the EISPACK test suite. Whenever the error is greater than 10�13, the conditionnumber of the corresponding eigenvalue is also given. In four cases, no error is madebecause A2TRI is able to permute the matrix into triangular form. In the two cases inwhich the relative error is greater than 1, the tridiagonal matrix returned by A2TRIis similar to the original matrix and all the error occurs in TLR. (This is not truein general.) There are also four cases where a signi�cant amount of work is avoidedbecause the problem de
ates during the reduction to tridiagonal form. The apparentbad behavior in problem 2 is deceptive, because this problem has eigenvalues (�i)spread over six orders of magnitude. Let ��i be the exact eigenvalues of A. Wilkinson[21] gives a bound on the absolute error of the eigenvalues asj�i � ��ij � k A k �si ;where � is machine precision and si is the inner product of the normalized left andright eigenvectors of �i. For problem 2 k A k� 1010 and si � 1. Assuming � = 10�16,the absolute error for the �i in problem 2 should be better than 10�6 and in fact wesee an absolute error of 10�8.To determine the relative accuracy of the new algorithms, two comparisons wereperformed on a range of problem sizes. In the �rst comparison, the eigenvalues of thetridiagonal matrix were computed with HQR and compared with the correspondingeigenvalues of the original matrix as computed with ORTHES/HQR. This measuresthe loss of similarity caused by the reduction to tridiagonal form. The second com-parison was between the eigenvalues computed by A2TRI/TLR and the eigenvaluescomputed by ORTHES/HQR. Figure 5 presents the accuracy seen during these com-parisons.
50 100 150 200n10�1510�1410�1310�1210�1110�1010�910�810�710�6maximumrelativedi�erence from

Fig. 5. Typical degradation of eigenvalue accuracy seen with A2TRI and TLR for randomorthogonal matrices.The graph clearly shows that the accuracy decreases as the matrix size increases.Similar results have been observed with other tridiagonalization methods [2], [11].All calculations were performed in double precision. To avoid variations due to ill-conditioned eigenvalues, random orthogonal matrices were used in these tests. The



12 G. A. GeistTable 2Number of �xups, maximum relative error in any eigenvalue, and comments (1=siis the condition number of the corresponding eigenvalue) for A2TRI/TLR on the EIS-PACK test suite.EISPACK Test Suite of Real General MatricesProblem Number Relative error Commentsnumber of �xups in �i (1=si =condition number of �i)1 0 10�132 0 10�11 1=si = 13 3 10�6 1=si = 1074 0 10�155 0 10�156 0 10�137 9 10�9 1=si = 10158 0 0 zero matrix9 0 10�6 1=si = 101610 1 10�1411 0 10�1512 0 2:5 1=si = 1015, Tridiagonal OK13 2 10�1414 2 10�1515 0 10�1516 0 0 permuted to triangular form17 0 0 permuted to triangular form18 0 0 permuted to triangular form19 0 10�7 1=si = 101220 1 10�1621 1 10�1622 3 10�1423 4 10�1324 4 10�9 1=si = 102325 2 10�1626 0 10�16 de
ated during reduction27 0 107 1=si =1, Tridiagonal OK28 0 10�1629 1 10�16 de
ated during reduction30 6 10�1331 0 10�12 1=si = 101332 0 10�3 1=si = 101133 0 10�16 de
ated during reduction34 0 10�16 de
ated during reduction35 0 10�1 1=si = 1014
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